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CHAPTER 1

INTRODUCTION

From the fracture mechanics standpoint, fatigue failure

of a metallic component results from the propagation of a

dominant crack to its critical size. Hence, the crack propa-

gation analysis is one of the major tasks in the design and

life prediction of fatigue-critical structures, such as air-

frames, gas turbine engine components, and helicopter struc-

tures, just to mention a few. Durability and damage tolerance

are two major design requirements for aircraft structures,

in which the prediction of fatigue crack growth damage accumu-

lation is one of the most important tasks [Refs. 1-6].

Experimental test results indicate that the fatigue

crack propagation involves considerable statistical varia-

bility. Such a variability should be taken into account

appropriately in the analysis and design of fatigue-critical ".

components. As a result, probabilistic approaches to deal

with the fatigue crack propagation have received considerable

attention recently, and some statistical models have been

proposed in the literature (e.g., Refs. 7-28].

Unfortunately, the statistical variability of the crack

growth rate seems to vary with respect to many parameters,

such as materials, amounts of load transfer in fastener holes, I
types of specimens, magnitude of constant amplitude loads,
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types of spectrum loadings, ranges of crack size, environ-

mental conditions, etc. For instance, the crack growth rate

dispersion for specimens under constant amplitude loadings

differs from that under spectrum loadings. The variability

in crack growth damage accumulation for fastener hole speci-

mens with natural cracks (starting from time to crack ini-

tiation) differs also from that of preflawed specimens. For

practical analysis and design purposes, test results as close

to the service loading environments as possible are highly

desirable, and the statistical model should be established

based on the correlation with test data thus obtained.

From the standpoint of practical applications, any sto-

chastic model for the fatigue crack propagation should be as

simple as possible while maintaining a reasonable accuracy for

the prediction of the fatigue crack growth damage accumulation.

The purposes ofthis report are as follows: Ui) to investigate

and examine simple stochastic models proposed in the literature

for practical applications, (ii) to propose several new

stochastic crack propagation models and to demonstrate

their validity by correlating with extensive experimental

test results, (iii) to recommend a most appropriate stochastic

model for practical applications in aircraft structures, (iv)

to investigate factors affecting the accuracy of stochastic

crack propagation analysis, including the data processing

procedures for obtaining the crack growth rate data and the

number of fractographic data points for each specimen, (v) to

apply the recommended stochastic crack growth model to
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possible durability analysis of aircraft structures, and

(vi) to investigate possible applications to probabilistic

damage tolerance analysis as well as the fatigue reliability

analysis of non-redundant structural components under

scheduled inspection and repair maintenance.

On the basis of fracture mechanics, the stochastic crack

propagation model should be built upon the crack growth rate

descriptions. Hence the fracture mechanics parameters and

the model statistics should be estimated from available crack

growth rate data. Base-line crack growth rate data are ob-

tained from the measurements of crack size versus cycle (or

flight hour) using various data reduction methods, such as

the direct secant, modified secant, and 5, 7 and 9 point in-

cremental polynomial methods. Unfortunately, different data

processing procedures result in different statistical disper-

sion for the crack growth rate data [e.g., 29-36). Further-

more, bias in determining the crack growth rate parameters

using the derived crack growth rate data may be induced by

unequal number of data points associated with each test

specimen. As a result, the effects of the data processing

procedure and the number of data points (measurements) for

each specimen on the overall probabilistic prediction of

crack growth damage accumulation are investigated.

Metallic airframes contain thousands of fastener holes

which are susceptible to fatigue cracking in service. The

accumulation of relatively small fatigue cracks in fastener

holes (e.g., 0.03" - 0.05") must be accounted for in the
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design of aircraft structures to assure that the structure

will be durable and can be economically maintained [2,4 and

51. In this report an initial fatigue quality (IFO) model,

based on stochastic crack growth and the equivalent initial

flaw size (EIFS) concept, is described and evaluated for the

durability analysis of relatively small fatigue cracks in

fastener holes (e.g. s 0.10"). Procedures and concepts are

also described and evaluated for optimizing the equivalent

initial flaw size (EIFS) distribution parameters based on

pooled EIFS results. Fatigue crack growth results for 7475-

T7351 aluminum fastener holes under fighter and bomber load

spectra are used to evaluate the proposed IFQ model and model

calibration procedures. The cumulative distribution of crack

size at any given time and the cumulative distribution of the

time-to-crack initiation (TTCI) at any given crack size are

predicted using the derived EIFS distribution and a stochas-

tic crack growth approach. Predictions compared well with

actual test results in the small crack size region. The

methods described are promising for durability analysis appli-

cation.

Based on a stochastic crack propagation model and the

distribution of the equivalent initial flaw size (EIFS), a

fatigue reliability atiaiLysis methodology is presented for

non-redundant structural components under scheduled inspec-

tion and repair maintenance in service. Emphasis is placed

on the airframe components in which fastener holes are cri-

tical locations. The significant effect of the nondestruc-

4
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tive evalurtion (NDE) system as well as the scheduled inspec-

tion maintenance on the fatigue reliability of structural

components is illustrated. A numerical example for the crack

propagation in fastener holes of a F-16 lower wing skin is

presented to demonstrate the application of the developed

analysis methodology.

In Chapter 2 the validity and practicality of simple

stochastic crack growth models proposed in the literature

are investigated using extensive fatigue crack growth data

of fastener hole specimens. While the general lognormal

random process model has been proposed in the literature

[Refs. 16-21,25-26], the method of analysis has not been

established, and its advantage has not been demonstrated by

experimental test results. These tasks are accomplished in

Chapter 2. In Chapter 3, several new stochastic models

using the second moment approximation approach are proposed,

investigated, and verified by experimental test results

using fastener hole specimens. In Chapter 4 stochastic

crack growth behavior in center-cracked specimens are in-

vestigated using various models studied in Chapters 2 and 3.

In Chapter 5 the effect of data processing procedures and

the required number of fractographic readings for each

specimen on the stochastic crack growth analysis results

are investigated. Chapter 6 presents the applications of a

recommended stochastic crack growth model to durability

analysis. 1i Chapter 7, possible applications of a recom-

mended stochastic crack growth model to the fatigue
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reliability analysis of structural components under scheduled

inspection and repair maintenance are presented. Conclusions

and recommendations are made in Chapter 8.

N
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CHAPTER 2

STOCHASTIC MODELS FOR FATIGUE CRACK PROPAGATION

2.1 Stochastic Crack Propagation Model

Various fatigue crack growth rate functions have been pro-

posed in the literature [e.g., Refs. 37-42]. These functions

can be represented by a general form

da(t) = L(AK,K RSa) (1)
dt max'

in which L(AK,Kmax ,R,S,a) = a non-negative function, t = time

or cycle, a(t) = crack size at t, AK = stress intensity factor

range, K max= maximum stress intensity factor, R = stress

ratio, and S = maximum stress level in the loading spectrum.

Some commonly used crack growth rate functions, such as

Paris-Erdogan model [411, Forman model [42], and hyperbolic

sine model [16,25-26], are given in the following

da(t) - L = C(AK)n (2)
dt

da(t) L = C(AK )n(3)
dt (1-R)K - AKc

da(t) L = 10**{Clsinh[C2 (logAK + C3 )] + C4 } (4)
dt1 23 4

in which ** represents the exponent and the arquments of L

have been omitted for brevity. In the above equation, C, n,

7U S.o,4
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C1 , C2 , C3 and C4 are constants to be determined from base-

line crack propagation data.

For crack propagation in fastener holes under spectrum

loading, the following crack growth rate equation proposed

recently appears to be reasonable [Refs. 6,43-47],

da(t) = L = Qab(t) (5)

in which Q C C5 SY; C5 , b and y are constants depending

on the characteristics of the spectrum loading and the mate-

rials of fastener specimens.

The crack growth rate models described above are deter-

ministic in nature. In order to take into account the sta-

tistical variability of the crack growth rate, Eq. (1)

is randomized as follows [Refs. 16-211,

da(t) = X(t)L(AKKma R,S,a) (6)
dt max

in which the additional factor X(t) is a non-negative sta-

tionary stochastic process with a median value equal to unity.

Thus, the deterministic crack growth rate function given by

Eq. (1) represents the median crack growth rate behavior,

and the random process X(t) [Refs. 16-21] accounts for the

statistical variability of the crack growth rate.

To take into account the statistical variability of

fatigue crack growth damage accumulation, Bogdanoff and Kozin

[e.g., Refs. 10-13] have proposed that the crack size a(t)

is a discrete Markov chain. Such a stochastic process, how-

ever, is based on the crack size a(t) rather than the crack

growth rate da(t)/dt. Based on the stochastic crack growth
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rate model given by Eq. (6), Lin and Yang proposed that X(t)

followed a continuous Markov process [e.g., Refs. 18-201. Fur-

ther, Yang et al. considered a special case in which X(t)=X is

a random variable for fastener hole specimens under spectrum

loadings (Refs. 21-26].

2.2 Fatigue Crack Growth Data in Fastener Holes

To show the statistical variability of the crack growth

damage accumulation, crack propagation time histories for five
,

data sets are shown in Figs. 1-5 . These test results were

obtained from fractographic data of 7475-T7351 aluminum fas-

tener hole specimens subjected to spectrum loadings. The first

two data sets shown in Figs. 1-2 are referred to as WPB and

XWPB, respectively, in which the letters W, P and B indicate

that the specimens are drilled with a Winslow Spacematic drill

(W), using a proper drilling technique (P), and subjected to a

given B-i bomber load spectrum (B). The additional symbol X

associated with the XWPB data set denotes the fasteners having

a 15% load transfer, whereas the WPB fasteners transfer no

load. Specimens for both data sets from Ref. 48 had a width

1.50 inches. All fastener holes were not intentionally

lawed so that natural fatigue cracks were obtained and the

time-to-crack initiation varied from one specimen to another

[see Refs. 44-481.

The fractographic data have been censored to include

only those corner cracks propagating from 0.004 inch to 0.04

inche for the WPB data set and from 0.004 inch to 0.07 inch

for the XWPB data set. This censoring procedure is necessary

*
Figures and tables are located in the back of the report.
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to normalize the data to zero life at 0.004 inch, and to ob-

tain homogeneous data sets as shown in Figs. 1-2. The resul-

ting WPB and XWPB data sets include 16 and 22 specimens,

respectively.

Fastener hole specimens used in Ref. 48 were too narrow

to acquire fatigue crack growth data, without significant edge

effects included, for large fatigue cracks. -?o generate frac-

tographic data for crack growth damage accumulation in the

large crack size region, General Dynamics/Fort Worth Division

recently fatigue tested eight dog-bone specimens of 7475-T7351

aluminum with a 3.0 inch width and a 0.375 inch thickness in

the test section. These tests were conducted to acquire natural

fatigue cracks in fastener holes greater than 0.60 inch. Each

specimen contained a 0.25 inch nominal diameter straight-

bore center hole with a NAS6204 (0.25 inch diameter) steel

protruding head bolt installed with a "finger-tight" nut. All

fastener holes were drilled with a modified spacematic drill

without deburring holes [see Ref. 28].

Four specimens were tested under a fighter spectrum,

referred to as the WWPF data set and four other specimens were

tested under a B-1 bomber spectrum, referred to as the ?WPB

data set; the first letter W refers to a wide (i.e., 3.0

inch) specimen. Fastener holes were not intentionally pre-

flawed so that natural fatigue cracks could be obtained. The

fractographic data for each specimen in the WWPB and WWPF

data sets were normalized to a zero life at crack sizes of

0.008 inch and 0.017 inch , respectively, to obtain

10



homogeneous crack growth data bases, in which each specimen

starts with the same initial crack size. The normalized

crack growth results for the two data sets are presented

in Figs. 3 and 4.

Recently, 10 dog-bone specimens (7075-T7651 aluminum)

were fatigue tested in a 3.5% NaCI solution using a fighter

spectrum (hi-lo 400 hour block). Tests and fractographic

results were documented in Ref. 49. Test specimens were

2 inches wide and 0.3 inch thick in the test section and

included a center hole (open with a nominal diameter of

7/16 inch). All fastener holes were polished to obtain

at least 8 microinches finish in the bore of the hole to

minimize the effects of initial hole quality variation.

An environmental chamber containing 3.5% NaCl solution was

mounted on the test specimen. All spectrum fatigue tests

were run continuously until specimen failuire or to a specified

time. Servo-controlled hydraulically actuated load frames

were used. Two different loading frequencies were used; I
fast = 8,000 flight hours per 2 days and sltw = 8j30I

flight hours per 16 days. A fractographic evaluatio-, of the

largest fatigue crack for each specimen was performed to

determine the crack growth behavior in terms of crack size

versus flight hours.

Fastener holes were not intentionally preflawed in any

of the 10 specimens so that natural fatigue cracks could

be obtained, and the time-to-crack-initiation varied from

one specimen to another. The fractographic data for each

11



specimen were normalized to-a zero life at a crack length of

0.01 inch to obtain a homogeneous crack growth data base in

which each specimen starts with the same initial crack size.

The normalized crack growth results, presented in Fig. 5,

are referred to as the CWPF data set. It is observed

that the statistical dispersion of the crack growth damage

accumulation is very large; a typical phenomenon of

corrosion-fatigue cracking in fastener holes.

For detailed descriptions of the geometries of test

specimens, loading spectra, fractographic readings of

crack sizes, crack geometries, etc., refer to References

6, 44-47 for the WPB and XWPB data sets, to Reference

28 for the WWPF and WWPB data sets, and to Reference 49

for the CWPF data set.

2.3 Lognormal Crack Growth Rate Model and Analysis Procedures

Since X(t) should be non-negative, it was proposed

to be a stationary lognormal random process by Yang,

et al. [Refs. 16-21]. The validity of the proposed log-

normal random process will be verified later. The lognormal

random process, X(t), is defined by the fact that it's

logarithm is a normal (or Gaussian) random process, i.e.,

Z(t) is a normal random process, where

Z(t) = log X(t) (7)

12
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The stationary normal random process Z(t) is defined by !-he

mean value Pz and the autocorrelation function Rzz(t). The

autocorrelation function between Z(t) and Z(t+T) is given by

Rzz(t) = E[Z(t)Z(t+i)] (8)

in which E[ ] is the ensemble average of the bracketed

quantity. Because the process Z(t) is stationary, the auto-

correlation function R zz(T) depends only on the time difference T.

The Fourier transform of the autocorrelation function,

denoted by Ozz(W), is referred to as the power spectral

density, [e.g., 50-51],

1 (W) RZ(T)e -iTdT (9)

in which i = /T• and w = frequency in radians per second.

The mean value, V z', of Z(t) is equal to the logarithm

of the median value, X, of X(t). Since the median value

of X(t) is equal to unity, the mean value pz of Z(t) is

equal to zero, i.e., uz = log X = 0.0. Hence Z(t) is a

stationary normal random process with zero mean, and it is

completely defined by the autocorrelation function Rzz(I).

The standard deviation Oz is a special case of R zz(), in

which T =0, i.e.,

13
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o = VWT7T (10)z zz

Consider the fatigue crack propagation in fastener holes

subjected to spectrum loading, such that Eq. (5) applies,

i.e.,

da(t) = X(t)Qab (t) (11)
dt

Taking the logarithm of both sides of Eq. (11), one obtains

Y = bU + q + Z(t) (12)

in which

da(t) I
Ylog dt U = log a(t) q = log Q (13)

The relationship between the log crack growth rate, Y

log[da(t)/dt], and the log crack size, U = log[a(t)], for I
the test results shown in Figs. 1 to 5, are obtained herein

using the 5 point incremental polynomial method [e.g., 36,69].

The results are presented in Figs. 6 to 10 by dots. In

Figs. 6 to 10 note that the test results scatter around a

straight line, indicating the validity of Eqs. (5) and (11).

Crack growth rate data have also been derived from

Figs. 1 to 5 using the modified secant method [7,8]. How-

ever, the modified secant method is not recommended, because

it introduces larger statistical dispersion of the crack

growth rate than the five point incremental polynomial

method. This will be discussed later. It is important to

emphasize that the statistical dispersion of the crack growth

rate data depends not only on the inherent material crack

14



resistant variability but is also influenced significantly by

the following factors; (i) the data reduction procedure used,

such as the secant method, the method of incremental polyno-

mial, etc., and (ii) the statistical error in crack size

measurements as well as the crack size measurement interval.

The results of such investigations along with other relevant

factors will be presented later.

Since Z(t) at time (or cycle) t is a normal random

variable, it follows from Eq. (12) that the log crack growth

rate Y = log[da(t)/dt] is also a normal random variable,

conditional on a given crack size a(t). The mean value, py

and standard deviation, ay, of Y are given by

Py = bU + q (14)

y = 0 z (15)

The crack growth rate parameters b and Q, as well as the

standard deviation, az, of Z(t), conditional on the crack

size a(t), can be obtained from the test results of the crack

growth rate versus the crack size using Eq. (12) and the

linear regression analysis (Refs. 17,211. With the crack

growth rate data shown as dots in Figs. 6 to 10, the method

of linear regression is employed to estimate b, Q and a
"..

The results are presented in Table 1. Also displayed in

Figs. 6-10 as straight lines are the mean values of the crack

growth rate Vy given by Eq. (14). Since Y and Z are normal

random variables, and Eq. (12) is linear, the linear regres-
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sion analysis is identical to the method of least-squares or

the method of maximum likelihood.

To show the validity of the lognormal crack growth rate

model, i.e., X(t) is a stationary lognormal random process

with a median of unity, it is necessary to demonstrate that Z(t)

follows the normal distribution with zero mean, i.e.,

FZ(t)(z) = p[Z(t) < zi = C(z/az) (16)

in which 0( ) is the standardized normal distribution func-

tion and az has been estimated in Table 1.

Sample values of Z(t), denoted by zj, are computed from

the sample values of Y and U, denoted by (yj,u.), using

Eq. (12)

zj = yj - buj - q for j=l,2,...,n (17)

where b and q have been estimated by the linear regression

analysis in Table 1 and n is the total number of test data.

Sample data, zj (j=l,2,...,n), associated with Figs.

6-10 are computed from Eq. (17) and plotted on the normal

probability paper in Figs. 11-15, where the sample values,

z., are arranged in an ascending order, viz, z21< z 2  .

< zn. The distribution function corresponding to zj is

j/(n+l). Hence, on the normal probability paper z. is

plotted against I-I j/(n+l)] with •-( ) being the inverse

standardized normal distribution function. A straight line

shown in Figs. 11-15 denotes the normal distribution for Z

with cjz being given in Table 1. It is observed that the

16



sample values of Z scatter around the straight line, indicating

that the normal distribution is very reasonable.

Kolmogorov-Smirnov tests for goodness-of-fit [52,53] were

performed to determine the observed K-S statistics. The

results show that the normal distribution is acceptable at

least at a 20% level of significance for all data sets, in-

dicating an excellent fit for the normal distribution.

The crack growth rate da(t)/dt follows the lognormal

distribution, and the coefficient of variation, denoted by V,

is related to az through the following relation

2 1]1/2 (
v= reozl)- l(18)

The coefficient of variation, V, of the crack growth rate

for WPB, XWPB, WWPF, WWPB and CWPF data sets are also shown

in Table 1.

Experimental study of the measurement of crack propaga-

tion at microscopic level indicates that the fatigue crack

propagates successively creating striations randomly spaced.

It is suggested that the spacing of such striations is

somehow related to the rate of crack propagation. Consider-

able statistical dispersion of the spacing of striations has

been observed [Ref. 271. Moreover, the striation spacings

are correlated and its correlation decays as the distance in

space increases [Ref. 27]. Thus, it is reasonable tc assume

that the autocorrelation function Rzz(T) of the normal random

process Z(t) is an exponentially decaying function of the time

difference, T, i.e.,

17



R (T) = 2 e-tI (19)zz 2

in which - is the measure of the correlation distance for

Z(t).

The power spectral density tzz(w) corresponding to Eq.

(19) is obtained as

1W ar2 e-OLI eliWT d 2Ca2 (0
zz 21r jz 2 2

Both the autocorrelation function and the power spectral

density of Z(t) given by Eqs. (19) and (20) are shown in

Fig. 16 for two values of t-l.

Within the class of random process Z(t) or X(t), two

extreme cases should be considered, because of mathematical

simplicity. At one extreme when ý--, the autocorrelation

function becomes a Dirac delta function,

R z2 = (-r) (21)

indicating that the random process Z(t) or X(t) is totally

uncorrelated at any two time instants. Such a random process

is referred to as the white noise process.

At another extreme as &.+0, the autocorrelation function

Rzz(T) becomes a constant, i.e.,

2Rzz (u) = (22)z

indicating that the random process Z(t) or X(t) is totally

correlated at any two time instants. Hence Z(t) or X(t)

becomes a random variable, and the crack propagation model

is referred to as the lognormal random variable model.

18



In reality, the stochastic behavior of crack propagation lies

between the two extreme cases described above.

Although the general lognormal random process model for

X(t) was proposed by Yang, et al. [Refs. 16-211, the analysis

and verification of the mode]. using available data sets were

not carried out, because they found that the random variable

model is adequate for the fastener hole specimens subjected to

bomber or fighter loading spectra. In this report, the

analysis of the general lognormal random process model is

performed using the method of Monte Carlo simulation. Further,

the correlation studies between such a model and the test

results are also conducted.

2.4 Lognormal Random Process Model

In the prediction of fatigue crack growth damage accumu-

lation in fastener holes, two statistical distributions are

most important: The distribution of the crack size a(t) at

any service time t, and the distribution of service life to

reach any given crack size, including the critical crack size.

Integrating Eq. (11) from zero to t, one obtains

a0a(t) = 1/c (23)

UI - cQa0A (t) ]

in which a0 = a(O) is the initial crack size and

c =b- 1 (24)
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A(t) = I X(T)dT (25)

0

When X(t) is either a lognormal random process or a log-

normal white noise, the distribution function of the crack

size, a(t), at any service time t is not amenable to analytical

solution. As a result, the method of Monte Carlo simulation

is used herein. The stationary Gaussian random process

Z(t) = log X(t), Eq. (7), can be simulated using the following

expression [e.g., Refs. 54-55]

Z (t) = f2Aw ReI 14 DZZ (Wk) e- (26)
k 1

in which Re{ } represents the real part of the complex quantity

in the bracket, and #k (k=l,2,...,M) are statistically in-

dependent and identically distributed random variables with

the uniform distribution in rO,2ff], i.e.,

fk(X) = 2 for 0 < x < 271
(27)

=0 elsewhere

where f (x) is the probability density function of the ran-

dom variable *k (k=l,2,...,M). In Eq. (26), the power spectral

density 4) (w) for w > 0 is evaluated at an equally spaced

interval Aw with wk kA0u > 0.

The well-known Fast Fourier Transform (FFT) technicue

can be applied by letting

20

q



W k = kAw , t = jAt and AwAt = 27/M (28)

such that Eq. (26) becomes [54,551

Z(jAt) = 42AW Re [ (kAw) e ] i ko (29)

1k l --4ýz,(,&. e e(9

Thus, when applying the FFT technique, the stationary Gaussian

random process Z(t) is evaluated at equally spaced discrete

time points t. = jAt for j=l,2,...,M. The total number of

sample points, M, must be an integer power of 2 based on the

FFT algorithm.

Sample functions of the crack size a(t) versus the

service time t can be simulated conveniently using the effi-

cient FFT technique. The Monte Carlo simulation procedures

are summarized in the following:

(i) Simulate a sample function, say the jth sample

function, of stationary Gaussian random process

IZ.(t) using Eq. (29) and the FFT techrique.

(ii) Compute the corresponding sample function of the

stationary lognormal random process Xj (t)

X (t) = (10)**Zj (t) (30)

(iii) Compute the sample function A (t) as a function

of time t using Eq. (25), i.e.,

(t) = j (T )dT (31.)

0
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(iv) Compute the sample function of the crack size

aj(t) as a function of time t using Eq. (23),

i.e.,

a. (t) = (32)S[I - cQaCA M It ]iic

(v) Repeat procedures (i) to (iv) for N times, i.e.,

j=l,2,...,N, to obtain N sample functions of the

crack size a(t) as a function of the service time

(vi) Sample values of the random time, T(aI), to reach

any specific crack size a1 is obtained from sample

functions a(t) versus t by drawir; ' 'orizontal 1
line through the crack size a(t) = a, "Y simu-

lated distribution function of T(a 1 ) is established

from the sample values thus obtained.

(vii) Sample values of the crack size a(T) at any ser-

vice time T is obtained from sample functions of

a(t) versus t by drawing a vertical line through

t = T, and the distribution function o:C a('L) iE

established from the corresponding sample values.

2.5 Lognormal White Noise Model

As described previously, the stationary Gaussian random
1.

process Z(t) is a Gaussian white noise when its autocorre- 4
lation function is a Dirac delta function given by Eq. (21).

The corresponding power spectral density 4 zz() is constant,

i.e.,
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R () 2 a 6 (T) z (w.)) = a2/27 (33)zz z zz z

With the constant power spectral density as well as the

values of b, Q, and az given in Table 1, sample functions of

the crack growth damage accumulation a(t) for WPB and XWPB

fastener holes are simulated and presented in Figs. 17-18.

The following conclusions are derived from a comparison

between the simulation results,Figs. 17-18,and the experimen-

tal test data given in Figs. 1-2. Wi) The Gaussian white

noise model correlates very well with the experimental data

only for the mean (average) crack growth behavior, and (ii)

the model introduces very little statistically dispersion for

the crack growth damage accumulation. As a result, the Gaussian

white noise model is unconservative and unrealistic for en-

gineering applications. No further study will be made of this

model.

It is interesting to note that Virkler, Hillberry and

Goel [Refs. 7 - 81 have undertaken simulation studies of

fatigue crack propagation , which amount to the white noise

assumption, although the method of Monte Carlo simulation

they used is different from what is described above. They

also arrived at the same conclusions [Refs. 7 -81. The fact

that the white noise model results in a small statistical

dispersion for the crack growth damage accumulation can be

shown in the following.

Equation (25) can be written as follows:
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n
A(n,&t) -I X(jAt) At (34) •

j=l

Being a Gaussian white noise, Z(jAt) and Z(kAt) are statis-

tically independent for j y k. Hence, X(jAt) = (10)**Z(jAt)

and X(kAt) = (10)**Z((kAt) are also statistically indepen-

dent. It follows from Eq. (34) that A(nAt) is the sum of

independent random variables X(jAt) (j=l,2,...,n),in which

each random variable has an identical median value (unity)

and standard deviation. By virtue of the central limit

theorem, the statistical dispersion of A(t) diminishes as n

increases, and hence A(t) approaches to the mean value. Then,

it follows from Eq. (23) that the statistical dispersion of

the crack growth damage accumulation a(t) is extremely

small.

2.6 Lognormal Random Variable Model

For the other extreme case in which &÷0, the lognormal

random process X(t), or the normal random process Z(t),

is completely correlated at any two time instants. Under

this circumstance, the lognormal random process X(t) becomes

a lognormal random variable X,and the normal random process

Z(t) becomes a normal random variable Z, i.e.,

X(t) -X ,Z(t) -z (35)

where

Z log X (36)
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Such a model is referred to as the lognormal random variable model

and it has been investigated in Refs. 16, 17, 21, 25 and 26.

For the lognormal random variable model, the statisti-

cal distribution of the crack growth damage accumulation can

be derived analytically as follows.

Equation (11) is now simplified as

da(t) XQab(t) (37)

and the integration of Eq. (37) yields

a0

a(t) = -X0al/C (38)
[1-XcQta0]

in which a0 = a(0) is the initial crack size and c b - 1 is

given by Eq. (24).

Let z be the y percentile of the normal random variable

Z. Then, it follows from Eq. (16) that

7% = P[Z >z z = 1 - [z /az] (39)

or, conversely,

zi = h h -i(1 - y%) (40)

in which P1 ( ) is the inverse standardized normal distribu-

tion function.

The y percentile of the random variable X, denoted by x ,

follows from Eq. (36) as
z

x= (10) 1 (41)
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and the y percentile of the crack size, a (t), at t flight

hours follows from Eqs. (38) and (41) as

a (t) W I/c (42)[1- x Ycota] 01

Various y percentiles of the crack size a (t) versus

flight hours t have been computed from Eqs. (39)-(42), using

the parameter values given in Table 1 for the WPB, XWPB,

WWPF, WWPB and CWPF data sets. The results are presented in

Figs. 19-23 in which the initial crack sizes, a 0 = a(0), for

each data set are, respectively,0.004, 0.004, 0.017, 0.008

and 0.01 inch. For example, the curve associated with y

= 10 in these figures indicates that the probability is 10%

that a specimen randomly chosen will have a crack growing

faster than that shown by the curve. Another inter-

pretation is that on the average 10% of the total specimens

will have a crack growing faster than that indicated by the

10% curve, when the total number of specimens is large.

Thus, the distribution function of the crack size, a(t),

as a function of service life t (flight hours) has been

established by Eqs. (39)-(42) and shown in Figs. 19-23. On

the basis of the lognormal random variable model, the dis-

tribution of the crack size at any service time t, and the

distribution of service life to reach any specific crack

size, including the critical crack size, can be derived

analytically as follows:

The distribution function of the lognormal random

variable X is given by
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Px(X) W P[X < x] = D[log x/oz] (43)

in which az has been obtained from the linear regression

analysis of the crack growth rate data shown in Table 1 for

various data sets.

The distribution function of the crack size, a(t), at

any service life, t, can be obtained from that of X given by

Eq. (43) through the transformation of Eq. (38). The results

are given as follows:

log ...

F a(t) = P(a(t) <x] at [(a cQt (44)
L Cz

Let T(aI) be a random variable denoting the time to reach

any given crack size a1. Then T(aI) can be obtained from

Eq. (38) by setting a(t) = a1 and t = T(aI), respectively,

i.e.,

1~ [a-c -alc] (45)
T(a 1 ) = Q-- [ 0 a1(

Thus, the distribution of T(a 1 ) can be obtained from that of

X given by Eq. (43) through the transformation of Eq. (45).

The results can be expressed as follows:

FT(a 1) = P[T (a1 )<t] = 1-<l- ( zn) (46)

where

1 [a 0 C -a] (47)
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In the durability analysis, the extent of cracking in a

structural component can be measured by the probability that

a crack size may exceed any specific value xI at any point in

time T, referred to as the probability of crack exceedance.

The probability of crack exceedance, denoted by p(xl,t), is

the complement of the distribution function of the crack size

a(T), i.e.,

p(xl,T) = P[a(T)>x1 ] = 1-F a(T)(xI

lo = (48)

in which Eq. (44) has been used.

It is observed from Eqs. (44) and (48) that the distri-

bution functions of the crack size at any given number of

flight hours and the time to reach any specific crack size,

as well as the probability of crack exceedance derived above,

require only the crack growth rate parameters b and Q as well

as the model statistics az. They are determined from the

linear regression analysis of the crack growth rate data

presented in Table 1.

2.7 Correlation With Experimental Results

2.7.1 Lognormal Random Variable Model

Based on the lognormal random variable model, the

distribution of the crack size, a(t), as a function of flight

28
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hours, t, can be expressed in terms of various y percentiles.

The results for WPB, XWPB, WWPF, WWPB, and CWPF fastener

holes are shown in Figs. 19-23, respectively. A visual com-

parison between Figs. 1-5 and 19-23 indicates agood corre-

lation between experimental results and the lognormal random

variable model.

Using Eqs. (46)-(47) the distribution functions for the

random number of flight hours to reach various crack sizes

a1 are shown in Figs. 24-28 as solid curves for different

fastener holes (a1 = 0.01, 0.02 and 0.04 inch for WPB fas-

tener holes; aI = 0.008, 0.025, and 0.07 inch for XWPB

fastener holes; a1 = 0.05, 0.15 and 0.51 inch for WWPF fas-

tener holes; a1 = 0.025, 0.1 and 0.57 inch for WWPB fastener

holes; a = 0.04, 0.08 and 0.35 inch for CWPF fastener

holes). The corresponding experimental results obtained

from Figs. 1-5 are plotted in Figs. 24-28 as circles. Fig-

ures 24-28 demonstrate a good correlation between the log-

normal random variable model (solid curves) and experimental

results.

The plot for the probability of crack exceedance is

referred to as the crack exceedance curve. The crack ex-

ceedance curves based on the statistical model, Eq. (48),

for various fastener holes at different service times

(flight hours) are shwon in Figs. 29-33 as solid curves.

Also shown in these figures as circles are the corresponding

test results obtained from Figs. 1-5. Again, the correlation

between the lognormal random variable model and the test

results is very good.
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In computing the crack growth rate data, da/dt, from

the fractographic results, various data processing procedures

can be used. These include the secant method, the modified

secant method, and the 3, 5, 7 and 9 point incremental poly-

nomial methods (Refs. 7,8,29,34-36]. For the statistical

analysis of crack propagation, the incremental polynomial

method is considered superior to the secant or modified

secint %iethod, because the latter introduces additional dis-

persion into the crack growth rate data. Both the direct

secant and modified secant methods have been employed in the

theoretical model; however, the correlation with the ex-

perimental results is not as good as that presented above.

Further investigation will be made in later chapters.

'The number of crack growth data measurements during ex-

permental tests, i.e., the crack size a(t) versus the flight

hour t, usually is not equal for each specimen. Frequently,

more data points are measured for specimens with slower crack

growth rates than those with faster crack growth rates. Conse-

quently, more crack growth rate data associated with the slow

crack growth specimens would have been used in the regression

analysis to determine the crack growth rate parameters b and

Q. As a result, the estimated parameter values of b and

0 tend to be biased to the slow crack growth damaqe

accumulation. This clearly violates the statistical implica-

tion that each specimen is statistically independent with the

same weight. To compensate for such an error, interpolations

have been conducted for fast crack growth specimens and
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additional crack growth rate data points have been added

artificially so that the number of crack growth rate data

points for each specimen is roughly the same. This approach

eliminates the estimation bias for the crack growth rate

parameters. This aspect will be discussed further in the

following chapters.

2.7.2 General Lognormal Random Process Model

When X(t) is a stationary lognormal random pro-

cess with a median value.of unity, the process Z(t) =

log X(t) is a stationary normal (Gaussian) random process

with zero mean and an autocorrelation function Rzz(T) given

by Eq. (19) or a power spectral density zz w) given by Eq.

(20). With such a stochastic model, the statistical distri-

bution of the crack growth damage accumulation is not amenable

to analytical solution. Hence, the method of Monte Carlo

simulation has been employed, and the simulation procedures

have been described previously.

For any general random process model, an additional para-

meter appearing in the autocorrelation function should be

estimated from the experimental test results. For instance,

the parameter C-1 in Eqs. (19) and (20), which is a measure

of the correlation distance, referred to as the correlation

parameter, should be estimated. Estimating such a

correlation parameter is quite involved and may require many

sample functions of the test results. Since the objective

herein is to investigate the ability of the proposed stochastic
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model in describing the statistical fatigue crack propagation

behavior, no effort is made to establish analysis procedures

for the determination of such a parameter.

Different values of the correlation parameter, E--

were used and the corresponding simulation results were ex-

amined. As expected, the statistical scatter of the crack

growth damage accumulation increases as the correlation para-

.-l.meter, ý , increases and vice versa. A value for the cor-
•-l

relation parameter, E , that results in a good correlation

with the experimental test results is chosen to demonstrate

the validity of the lognormal random process model.

The best parameter value, E-, associated with each data

set is shown in Table 2. Using the Monte Carlo simulation

procedures developed and described previously, and using

the power spectral density given by Eq. (20), sample functions

of the crack size a(t) versus the flight hour t have been

simulated, and some of these results are presented in Figs.

34-38. Although over 150 sample functions of a(t) have been

simulated for each case, only the first 50 sample functions are

depicted in these figures so that each figure will not be too

crowded. The total number of simulated sample functions for

each data set is given in Table 2. In the simulation process

using a FFT technique that is very efficient, the total number

of discrete points, M, for each sample function of a(t) is

2,048 with At = 60 flight hours except the CWPF data set in

which At = 20 flight hours (see Table 2.)
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It is observed that the simulated sample functions of

the crack growth damage accumulation a(t) presented in Figs.

34-38 closely resemble those of the experimental test results

given in Figs. 1-5. The simulation results for the distribu-

tion function, F T(al) M, of the random time, T(al), to reach

some specific crack sizes are presented in Figs. 39-43 as

solid curves (empirical distribution) for various data sets.

Also shown in these figures as stars are the experimental

test results obtained from Figs. 1-5. The probabilities of

crack exceedance at some specific service times are displayed

in Figs. 44-48 as solid curves, whereas the corresponding

test results for different fastener holes obtained from Figs.

1-5 are shown as stars. Figures 39 to 48 show that the cor-

relation between the lognormal random process model and the

experimental results is excellent.

3I
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CHAPTER 3

SECOND MOMENT APPROXIMATION

The most important statistics for a random variable such

as the crack size a(t), are a few lowest cumulants. Frequently,

the distribution function of a random variable is not amen-

able to analytical solution, but a few lowest cumulants

of such a random variable can be obtained easily. In

this case, the distribution may be approximated by

a particular function with an acceptable level of

accuracy when the few lowest cumulants are incorporated in
the particular distribution. Since the first two cumulants,

i.e., the mean value and standard deviation, of the crack

size a(t) at any service life t can be determined analytically,

the distribution function of act) will be Litted by dilferent

functions. Several possible distribution functions will be

studied from which a most suitable one may be chosen for a (t).

This approach is referred to as the second moment approximation.

Again, the crack propagation in fastener holes is con-

sidered such that the following crack growth rate equation

holds,

da(t) _ X(t)L(a) = X(t)Qab(t) (49)
dt

in which X(t) is a stationary lognormal random process and
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L(a) = Oab (t) (50)

3.1 Cumulant - Neglect Closure

A random process, say W(t), can be described by its log-

characteristic functional which has a series expansion as

follows [Ref. 20]:

Zn E{exp[[i (t)W(t)dtl} = iJf(t)Kl[W(t)]dt

.2 4
+ 4- Jfe(tl)e( 2 )K 2 [W(t l ) 'W(t 2 )]dt 1 dt 2

+ i-. O(tlI(lt2)Mt3)K3[Wlt ),Wlt2) ,Wit3 ]

3-1 jjj11 2  3 3 1 2  3

* dt 1 dt 2 dt 3 + ..... (51)

where E{ } = an ensemble average, i = V-T, K ] = nth t.

cumulant of n random variables, each integration extends

over the entire domain on which W(t) is defined, and 8(t)

belongs to a set of functions for which all the integrals

on the right-hand side exist and the series converges. It

can be shown that the first cumulant is equal to the mean

and the second and third cumu'ants are equal to the second

and third central moments, respectively. In the special

case 6(t) = Z6j6(t-tj) where 6j are constants, a log-

characteristic functional becomes a log-characteristic func-

tion. In general, the number of terms in Eq. (51) is infinite,

in which case an approximation is obtained when the series

is truncated, or when cumulants higher than a given order are
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set to zero. This general scheme is called the curaulant-

neglect closure. However, retaining only the first cumulant

is trivial since it reduces to the deterministic description

W(t) = E[W(t)'. The special case of Gaussian closure is

equivalent to neglecting the third and higher cumulants and a

allowing the random process to assume any value in -

Now, Eq. (49) can be simplified by a change of variable

[Ref. 20]:
a(t) dv

W(t) = f L(v) (52)
a 0

in which a 0 = a(0) is the initial crack size. Then Eq. (49)

becomes

dW(t) = X(t) (53)dt

if Fa(t) W and FW(t) (x) denote the distribution func-

tions of a(t) and W(t), respectively, then it follows from

Eq. (52) that they are related through

Fa(t) (x) = Fw~ylx)]

(54)
lx) = dv = (a"c - C )/cQ

a 0
•.

Hence, the distribution of a(t) can be derived once the dis-

tribution function of W(t) is obtained.

Integration of Eq. (53) from 0 to t yields

W(t) =f X(•)dT (55)

0
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It is obvious from Eq. (53) that W(t) is a stationary random

process, representing the integration of a stationary log-

normal random process.

While the distribution function of W(t) is difficult to

obtain, the cumulants of W(t) can be derived from that of

X(t) through the following relation

tI t 2

[W(t 1 )'W(t 2)'''IW(t n)] f I dT1 J dT2

0 0

t n

SKn [X(T1),X( 2),*•••,X n) ]dTn (56)
0

The first cumulant K 1 [W(t)] is the mean value given by

PI = E[W(t)] = E[X(T)ldT x t (57)

in which ji is the mean value of the stationary lognormal

random process X(t).

The second cumulant K2 (W(t 1 ),W(t 2 )] at the same time
2 2.

instant t 1=t 2=t is the variance E({W(t)-IJWj ' given by

2 Tw

UW f JO E({X(T 1 )-P x-{X(T 2 )- x-l1dT 1 d-r2

= J cov[X(T1 ),X(T 2 )1]dT 1dTd2  (58)

From the physical standpoint, the covariance function,

cov[X(T 1 ),X(1 2 )], of the crack growth rate should decrease
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as the difference between two time instants -1 and T

increases. Thus, an exponentially decaying function

is proposed herein

2 -11TI-T21 4

Cov[X(XI),X(T 2 )1 = e (59)

in which aX is the standard deviation of X(t), and ý-i is

a constant, that is a measure of the correlation distance.

As C -'0, the correlation distance approaches zero signifying

a white noise process for X(t). The solution for the white

white noise process, presented in the previous chapter,

is shown to be unreasonable. On the other hand, as C'l

-* X(t) is completely correlated and hence it is a random

variable. The solution for the random variable model has

been presented previously.

Substituting Eq. (59) into Eq. (58) and carrying out

the integration, one obtains

aw (ax/c)[e- t + ýt - 111/2 (60)

Thus, the mean value pW and standard deviation a of the L.

stationary random process W(t) are expressed in terms of the

mean value, VX' the standard deviation, cX, and the correla-

tion parameter r of the lognormal random process X(t), see

Eqs. (57) and (60). Both pX and cX can be determined from

experimental test results as follows.

Taking the logarithm of both sides of Eq. (49), one

obtains
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Y = bU + q + Z(t) (61)

in which

Y - log da(t) U = log a(t) , =logQ (62)dt 'q•lgQ(2

Z(t) = log X(t) (63)

where Z(t) is a stationary Gaussian (or normal) random pro-

cess with zero mean, i.e., VZ w 0, and standard deviation

oz. The crack growth rate parameters b and Q as well as the

standard deviation a of Z(t) can be determined from the base-

line crack growth rate data using Eq. (61) and the linear

regression analysis as described previously.

From the properties of lognormal random variable, the

mean value, PX. and standard deviation, aX' of X(t) are

related to VZ and a. in the following (e.g., Refs. 52,53]

Px = exp Ii (aZ9nlO)2] (64)

[e (z~n0) 2 11 /2
ax = Ux [ (65)

in which the property that VZ = 0 has been used.

Substituting Eqs. (64) and (65) into Eqs. (57) and (60),

one obtains the mean value, VW, and standard deviation, oW,

of the stationary random process W(t) as follows

11= t exp[ (cZRnlO)2] (66)
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(67)

The coefficient of variation of W(t), denoted by VW, is

given by

/(e-ýt+it 1)1/2 [e(aZtnlO)
2  i]1/2

VW = C'W/PW = t - (68)

3.2 Gaussian Closure Approximation

As mentioned before, the log-characteristic unction of

the random process W(t) can be expressed by an infinite

series involving all the cumulants as shown in Eq. (51).

An approximation can be made by a truncation of the series

or by setting all cumulants higher than a given order to

zero. This general scheme is referred to as the cumulant-

neglect closure [Ref. 20].

A special case of the cumulant-neglect closure is called

Gaussian closure, assuming that W(t) is a Gaussian (normal)

random variable, which is equivalent to neglecting the third

and higher order cumulants, and allowing W(t) to take values

in (-[,•) [Ref. 20]. I
With the Gaussian closure approximation, the distribu-

tion function, FW(t)(x) = P[W(t) < x], of W(t) is given by

FW(t)(x) = W- < x < ( (69)

in which VW and a.W are given by Eqs. (66) and (67), respec-

tively. The relation between the crack size a(t) and W(t)
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is obtained by substituting Eq. (50) into Eq. (52) and carry-

ing out the integration; with the results
W (t) (0c)-1 [o a-C

W(t) = (0-) [a a (t)] (70)

in which c b -'i)_

Hence, the distribution functionof the crack size a(t)

at any service life t can be obtained from that of W(t)

given by Eq. (54) as follows-

F (x) = FW(t)U[(Qc)-l(8-C - X-C)]a(t) F( 0

(0c)- a-C X-C) U
= 0(cla W , ~ <C (71)

in which Eq. (69) has been used.

Equation (71) admits all values for the crack size a(t),

including those values smaller than a00 To compensate the

error thus introduced, the crack size should be restricted

only to those values larger than a0 , denoted by a*(t). The

distributi'.,n function of the crack size a*(t) can be obtained

through the normalization process as follows;

Fa*(t) (x) = P[a*(t)<x] - l-P[a*(t)>x] = l-P( a(t)>xja(t)>a 0]

-- -P [a (t) >x-]- 1 p (t)(x

P [a(t) 1a0 ]- (a)
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= Fa(t) (x) -Fa(t) (a 0 ) x>a 0  (72)

1- Fa(t) (a 0 )

Substitution of Eq. (71) into Eq. (72) yields

F a*(t)(x) = -a c -W)C, )]

PWaI (73)
; 

i-

Such a normalized distribution, F a*(t)(x), is nearly equal

to the unnormalized one, F a(t)(x), except for very small t.

From an application point of view, the probability dis-

tribution of fatigue life (or crack propagation life) is also

of great interest. Let T(a 1 ) be the random time at which a

given crack size a1 is reached. Since the event {T(a) <_ t}

is the same as the event {a(t)>a 1}, the distribution func-

tion of T(a 1 ), denoted by F T(a (t), can be computed as

follows

T(al) (t) = a1 - F*,(t) (74)

in which the normalization procedure is used. Without

normalization, one obtains

FT(a) (t) = 1 - F(t) (al) (75)

The probability that a crack size will exceed x 1 , at

any service time T, referred to as the probability of crack
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exceedance, is given by

p(X 1,T) =P[a*(t))xT ] = 1 - Fa*(T) (x 1 ) (76)

in which Fa*(T) (x 1 ) is given by Eq. (73) with t and x being

replaced by T and xI, respectively.

3.3 Weibull Appro4 •imation

The distribution function of the crack size a(t) has

been derived from that of W(t) in Eq. (54). While the

distribution of W(t) is unknown, the mean value VW and stan-

dard deviation aW have been obtained in Eqs. (66) and (67).

Moreover it is obvious from Eq. (52) that W(t) is a non-

negative random variable, since L(a) in Eq. (50) is a non-

negative function of the crack size a. Thus, various

distribution functions which are defined in the positive

domain, such as Weibull, lognormal, gamma, etc., will be

investigated for approximating that of W(t).

Instead of truncating the third and higher order cumu-

lants, the distribution of W(t) is approximated herein by the

Weibull distribution. Note that the higher order cumulants

of the Weibull random variable are not zero. Consequently,

the Weibull approximation implies that the higher order

cumulants of W(t) are approximated by those of the Weibull.

Then, the distribution function of W(t) is given by

FW(t) (x) = 1 - exp{-(x/8) a x > 0 (77)
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in which a and 0 are the shape parameter and scale parameter,

respectively. Both a and 0 are related to the mean value,

1W, and coefficient of variation, VW, of W(t) through the

following [Ref. 53]

Vw = [r(1 + 1) - r 2 (l + ]1/2 r(I + 1 (78)

ow = ar( + 1) (79)

in which r( ) is the gamma function. Thus, the shape para-

meter a is determined from Eq. (78) and then the scale

parameter $ is computed from Eq. (79).

The distribution function of the crack size a(t) is

obtained from that of W(t) given by Eq. (77) through the

transformation of Eq. (70); with the results

Fa(t) (x) = l-exp{-[(a0 c _x-C)/cQO1] x 1 a (80)

The distribution function of the propagation life,

T(a1), to reach any given crack size aI is equal to

1 - Fa(t) (a1), i.e.,

FT(t) = exp{l-(aoC - X-C)/cQO]c(} (81)

and the probability of crack exceedance is given by

P(X 1 ,¶) = 1 - Fa(T)(xI) (82)

It is important to note that both the distribution

functions of a(t) and T(a 1 ), given by Eqs. (80)-(81), as well

44 "

.-- .



as the probability of crack exceedance, Eq. (82), are implicit

functions of the service life t. This is because a and 3 are

functions of VW and UW, see Eqs. (78)-(79), that in turn are

functions of t as given by Eqs. (66)-(68).

3.4 Lognormal Approximation

With the lognormal approximation, the distribution func-

tion of W(t) is expressed as

Fwt(x) log = - PogW\ x > 0 (83)

WlogW

in which plogW and alogW are the mean value and standard

deviation of logW, which are related to VW and VW in the

following [e.g., Refs. 52-531

Glogw [£n(l + V2)]I/2PnlO (84)

PlogW Zn 1/2 nl] (85)

where VW and VW are given by Eqs. (66) and (68), respectively.

Thus, the distribution functions of the crack size a(t)

at any service time t and the propagation life, T(aI), to

reach any given crack size a can be derived through Eqs. I
(54) and (83) as follows

F a(t(X) (D 0 x>a0 (86)
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and

FT(a1) (t) =1-P a (t) (aI) (87)

The crack exceedance probability p(xI,T) is obtained from

Eq. (82) where Fa(T) (x) is given by Eq. (86) with t and x

being replaced by T and xl, respectively.

3.5 Gamma Approximation

With the gamma approximation, the distribution func-

tion of W(t) is expressed as

FW(t) (x) = y(n,)x)/F(n) (88)

in which y(n,Xx) is the incomplete gamma function, and F(r)

is the complete gamma function given by

Ix

y(n,Xx) = f yn-i e-y dy (89)
0

(' (= y-l e-y dy (90)

0

The ." hand X are related to the mean value,

1W, and coe If variation, VW, as follows [Ref. 53]:
2

l/Vw (91)

v2
1 /(vWW) (92)
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where iW and VW are expressed in terms of oz, and C and t in

Eqs. (66) and (68), respectively.

The distribution function of the crack size a(t) at any

service time is obtained as

Fa(t) (x) y [nX(cQ) -1 (a 0 c - x-C)]/F(r) ; x a (93)

and the distribution function of the propagation life,T(a1 ),

to reach any given crack size aI is given by

FT(a1) (t) = 1 - Fa(t) (a1) (94)

The probability of crack exceedance can be obtained from Eq.

(82) in which Fa(T)(x 1 ) is given by Eq. (93) with t and x

being replaced by T and xl, respectively.

3.6 Correlation Between Second Moment Approximations and

Experimental Results

Unlike the general lognormal random process model in

which the correlation parameter -l is a measure of the

correlation distance for the Gaussian random process Z(t),
-i

the correlation parameter 1 in the present case is a
measure of the correlation distance for the lognormal random

process X(t). Again, no effort is made to establish pro-

cedures for determining -i from experimental results.

Hence, an appropriate value of C-i that results in the best

correlation with the experimental results is chosen by

scanning different values of T-i It is found that within
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the same data set, the parameter value ý-I providing the

best correlation varies slightly among various approximations.

As a result, a suitable value of -1 for each approximation

in each data set is shown in Table 3.

With the parameter values, b, Q, and aZ given in Table 1

as well as the value of - given in Table 3, the distribution

function, FT(al) (t), for the random time T(a 1 ) to reach any

specific crack size a,, has been derived in Eqs. (74), (81),

(87) and (94) for various approximations. The results for

different fastener holes are presented in Figs. 49(a) to

53(a) as dotted and solid curves for Weibull and gamma

approximations, respectively. With Gaussian closure and U
lognormal approximations, the results are presented in Figs.

49(b)-53(b), respectively, by dotted and solid curves. Also

shown in these figures as circles are the experimental results

obtained from Figs. 1-5. Furthermore, based on various

approximations the corresponding probabilities of crack

exceedance, p(xl,T), at any specific service life, T, are

depicted in Figs. 54-58 as dotted and solid curves. The

corresponding experimental results obtained from Figures

1-5 are shown in these figures as crircles,

Figures 49 to 58 demonstrate that the correlations

between all the second moment approximations and the experi-

mental data are very satisfactory.
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CHAPTER 4

FATIGUE CRACK PROPAGATION IN CENTER-CRACKED SPECIMENS

So far, emphasis has been placed on the crack growth

damage accumulation in fastener holes subjected to spectrumdamage

loadings, which is the main subject of this report. It

should be emphasized that the statistical model for the

fatigue crack propagation given in Eq. (6) is quite gen-

eral and it -an be applied to other materials, crack

geometries, fatigue loading, and environments. The log-

normal random variable model has been recently applied to

super-alloys used in jet engine components, such as IN100,

Titanium, Waspaloy, etc., in high temperature environments

[Refs. 26-27]. All the test data studied in Refs. 16, 26-

27 were obtained using compact tension specimens under

either constant-amplitude or spectrum loadings. The log-

normal random variable model was shown to be quite reasonable

for constant amplitude cyclic loadings. Likewise, it was II
demonstrated that the statistical model can be used to

predict the fatigue crack propagation under spectrum loading

using the base-line constant-amplitude test results

[Refs. 26-27].

A literature survey has been made to investigate avail-

able fatigue crack propagation data. Unfortunately, most of

the test results do not have enough replicates for a meaning-

ful statistical analysis as well as model varification, except
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one data set generated in Refs. 7 and 8. This data set,

consisting of crack growth damage accumulation in the large

crack size region, will be studied in this chapter.

Crack propagation experimental results of sixty-four

(64) center-cracked specimens, made of 2024-T3 aluminum and

subjected to a constant amplitude cyclic loading, were re-

ported in Refs. 7 and 8. The time histories of half crack

length, a(t), plotted against the number of cycles, t, are

shown in Fig. 59 [after Ref. 7 ]. The initial half crack

length of each specimen was 9 mm and the tests were ter-

minated when each half crack length reached 49.8 mm. The

maximum cyclic load was 5.2 kips (23.35 kN) and the stress

ratio was 0.2. Data for the crack growth rate, da/dt, versus

the stress intensity range, AK, were obtained from the test

results using the seven point incremental polynomial method.

The results were shown as dots in Refs. 7 and 8.

4.1 Synergistic Sine Hyperbolic Crack Growth Rate Function

The log crack growth rate data is not linearly related

to the log stress intensity range, AK. As a result, the

following synergistic sine hyperbolic function was shown to

be very reasonable for the crack growth rate [Refs. 16, 25

and 26],
da(t) = 1)Cl1sinh[C 2 (logK + C3)]1+C4 (95)/€

da (t) 0) (95)"Z

in which a(t) is the half crack length, AK is the stress

intensity range, C1 is a material constant, and C2 , C3 and
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C4 are parameters. Based on Eq. (6), the randomized form

for Eq. (95) is given by

da(t) = ~)1)Cl sinh[C 2 (logAK + C3) ]+C4 (6dat)= X(t) ( 10))34(96)

in which X(t) is a statio,:ary 1cqnormal random process with

a median value of unity.

Taking logarithms on both sides of Eq. (96) one obtains

= log dat(t) = ClhC 2 (logAK+C3 )]+C4 +Z(t) (97)

where Y = log(da(t)/dt] is the log crack growth rate and

Z(t) = log X(t) (98)

is a stationary Gaussian (normal) random process with zero

mean and standard deviation o .

The stress intensity range, AK, for the center-cracked

specimen is given by

AR AP = a a(t) sec [ra (t)/w] (99)

in which AP = load range = 4.16 kips, B = thickness of

specimen = 0.1 inch, and w = width of specimen = 6.0 inch.

The log crack growth rate data versus log AK were given

in Refs. 7 and 8 . From these data, the method of maximum

likelihood can be applied to estimate the parameters C2 , C3 ,

C4 , and the standard deviation aZ as described in detail in

Refs. 25-26; with the results,C2 =3.4477, C3 = -1.3902, C4 =

-4.5348 and cZ= 0.0823. The material constant C1 for aluminum
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is 0.5, i.e., C1 = 0.5. The autocorrelation function Rzz (T)

and the power spectral density Zz(w) of the stationary

Gaussian random process Z(t) are given by Eqs. (19) and (20),

respectively.

4.2 Lognormal Random Process Model and Correlation With

Experimental Results

For the Gaussian white noise model, Monte Carlo simula-

tions have been conducted in Refs. 7 and 8 as well as in

the present study. The simulation results are shown in Fig.

60. Similar to Fig. 7, the Gaussian white noise model

results in very little statistical dispersion for the crack

growth damage accumulation, and hence it is not a valid

model.

At the other extreme, the lognormal random variable model,

i.e., X(t) = X and Z(t) = Z = log X is applied as follows.

The y percentile of the log crack growth rate Y (AK,Ci),

(i=1,2,3,4) follows from Eq. (97) as

Y. Y(AKCi) = C1 sinh[C2 (logAK+C 3 )]+C 4 +z7 (100)

in which z is the y percentile of Z given by Eq. (40). The

y percentile of the crack growth rate becomes

da(t)] = (10)**Y (AK,Ci) (IC'

Then, the y percentile of the crack size after t cycles,

denoted by a Y(t), is computed by numerically integrating
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the y percentile crack growth rate, yielding

m
ay(t) M a 0 + A jaj(y) (102)

Y ~ j=1

Aa(Y) da(t) (103)

in which a = a(0) is the initial crack size and

m
t I At. (104)

j=l I

The cycle-by-cycle numerical integration given by Eqs.

(102)-(103) is deterministic and straightforward. Hence,

oy var•ing the value of the y percentile, one obtains from

a cycld-by-cycle integration a set of crack growth curves

a(t), i.e., the crack size versus the number of cycles for

each y value. The results were shown in Ref. 26, in which

a much larger statistical dispersion than the experimental

rraults was observed.

•.After constructing a series of crack growth damage accu-

mulation curves a (t) for many values of y, one can establish

(i) the Cistribution function FT(a (t) of the number of load

cycles' T(aI) to reach any crack size a1 by drawing a hori-

zontaI line through a1 , and (ii) the distribution function

F at(u) of the crack size a(t) at any number of load cycles
a(t,

t'by drawing a vertical line through t. Then, the probability
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of crack exceedance is obtained as p(xl,T) =1 - a(T)(Xl1

The distribution functions for the random number of load

cycles T(a 1 ) to reach half crack lengths a1 = 21 and 49.8 mm

are presented in Figs. 61(a)-61(b) as solid curves, whereas th•

probability of crack exceedance at t= 150,000 cycles is dis-

played as a solid curve in Fig. 62. The corresponding ex-

perimental results obtained from Fig. 59 are shown in these

figures as circles. It is observed from Figs. 61-62 that

the lognormal random variable model is too conservative in

such a situation.

For the lognormal random process model, sample functions

of the normal random process Z(t) and the lognormal random pro-

cess X(t) have been simulated using the Fast Fourier transform

(FFT) technique previously described. Then, the corre-

sponding sample function of the crack size, a(t), versus the

number of load cycles, t, can be obtained from Eq. (96) using a

cycle-by-cycle numerical integration procedure. The correlation

parameter C-1 is chosen to be 9,524 cycles and the simulation

results of a(t) versus t are presented in Fig. 63. A compari-

son between Figs. 59 and 63 indicates that the simulated

sample functions resemble closely those of the experimental

results.

The simulated distribution functions for the number of load

cycles to reach some specific half crack lengths and the pro-

bability of crack exceedance at t= 150,000 cycles are presented

in Figs. 64 and 65 as solid curves. Also shown in these

figures as circles are the experimental results obtained

from Fig. 59. It is observed from Figs. 64 and 65 that
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the correlation between the lognormal random process model and

the experimental results is very satisfactory.

4.3 Second Moment Approximation

The mean value, x and standard deviation, x, of the

stationary lognormal random process X(t) are related to the

standard deviation az of the normal random process Z(t)

through Eqs. (64) and (65) as follows

l -x expII[ (az tnlO x- (105)

The covariance function of the lognormal random process X(t)

is given by Eq. (59), whereas the mean value, pW, standard

deviation, aW, and coefficient of variation, VW, of the

random process W(t) are given by Eqs. (66) to (68) in terms

of a and •. The random process W(t) is defined by Eq. (52)

as

W(t) a f dv (106)

a 0

in which it. follows from Eqs. (95) and (96) that F6

L(v) = 10**{Clsinh[C2 (logAK + C 3 )] + C4) (107)

where AK'= AK(v) is given by Eq. (99) with a(t) being re-

placed by v, i.e.,

A-p /TivsecT(iv/w] (18)Bw
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The distribution function of the crack size, a(t), after

any number of load cycles, t, can be derived from that of W(t)

through the transformation of Eq. (106) as follows

Fa(t) (x) = P [a (t) <x] = P (W (t) y (x)W] =FW(t) [y(x)1 (109)

in which FW(t)[y(x)] is the distribution function of W(t)

evaluated at y(x) where

x d

y(x) = J (110)

a 0

Hence, it follows from Eqs. (109) and (110) that

F (x) = Fdt (111)
a(t) M L7

in which L(v) is given by Eqs. (107) and (108).

The probability of crack exceedance p(xl,t), i.e., the

probability that a(T) will exceed any crack size x, is given

by

p(X1 ,T) = 1 - FW(T) (112)

Let T(a 1 ) be the random number of load cycles when the

crack size a(t) reaches a specific value a. Since the event

{a(t)>aI1 is the same as the event {T(al)<t} , the distribution

function of T(aI) is given by
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FT(a ) a (t) (a1 (113)

where Fa(t)(a 1 is given by Eq. (111) in which x is replaced

by a1 .

4.4 Gaussian Closure, Weibull, Gamma and Lognormal

Approximations

Various approximations presented in Chapter 3, i.e.,

Gaussian closure approximation, Weibull approximation, log-

normal approximation and gamma approximation, will be

studied in the following.

(i) For the Gaussian closure approximation, the dis-

tribution of W(t) is assumed to be Gaussian given

by Eq. (69) and the truncated distribution function,

Fa*(t)(x), of the crack size a(t) is given by

Eq. (72)

F (x) (..-F (aO)
(x) a(t) "a) ; x>a 0  (114)

S(t) 1 - a (t) ..,O)•t'

in which X

Fa(t) (x) = J a- (115)

where Eqs. (111) and (69) have been used, and

Fa(t) (a0) = ?(-lW/OW) (116)

p.
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The distribution function of the rýrndom number of

load cycles to reach any given crack size a 1 , is

given by Eq. (74), i.e.,

FT(a1) (t) = 1 - Fa*(t) (a1) (117)

where F a* t) (a 1 ) is given by Eqs. (114)-(116)

with x being replaced by a1 .

(ii) In the case of Weibull approximation, both the
distribution functions F (x) and FT(al) (t) can

be obtained from Eqs. (77) and (110)-(113) as

follows:

Fa(t) (x)=1-exp J L / ; x>-a (118)

FT(a (t) =exp Lv/ (119)

in which a and 0 are obtained from Eqs. (78) and

(79) in terms of VW and VW"

(iii) For the lognormal approximation, the distribution

functions of a(t) and T(aI) can easily be obtained

from Eqs. (83) , (110)-(113) as follows:

JX dv- ]log fa 0 U)Ilogw

0(t) (x a ; x>a 0  (120)
a a Jog
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a_
log, -dlog

FT(a) (t)=1 [O L0L 0 -a lg (121)

in which I.ogW and alogW are given by Eqs. (84)

and (85).

(iv) For the gamma approximation, the distribution

functions of both a(t) and T(a 1 ) can easily be

obtained from Eqs. (88) and (110)-(113) in the

following

Fa(t) (x) (X L, v)/() (122)
a 0

rT(a 1 ) (t) = 1 - ( J ,.)( (123)
a 0

in which Y( ) and r( ) are the incomplete and com-

plete gamma functions, respectively, and n and X

are given by Eqs. (91) and (92) in terms of VW

and IW"
The probability of crack exceedance p(xl,T) is given by

P(xIT) = 1 - Fa(T) (xI) (124)

in which Fa(T) (xI) is given by Eqs. (122), (120) and (118) for

the gamma, lognormal and Weibull approximations, respectively.

For the Gaussian closure approximation, however, Fa(T) (x) =

Fa* C) (xI) is given by Eq. (114).
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4.5 Correlation With Experimental Results

In addition to the crack propagation parameter values C1 ,

C2 , C3 , C4 and the model statistics az obtained previously,
•-l

the correlation parameter l is needed. In the present study,

a value of - is selected which gives a good correlation with

the experimental results. With 4-1 = 15,380 cycles, the distri-

bution functions for the random number of load cycles to reach

half crack lengths 13, 21 and 49.8 mm are presented in Fig.

66. The results of Weibull and gamma approximations are

shown in Fig. 66(a) by dashed and solid curves, respectively.

The results of Gaussian closure and lognormal approximations

are presented in Fig. 66(b), respectively, by dashed and solid

curves. Also shown in Fig. 66 as circles are the experimental

test results obtained from Fig. 59 for comparison. The proba-

bility of crack exceedance based on various approximations

are depicted in Fig. 67 as solid and dashed curves. The

corresponding experimental results obtained from Fig. 59 are

shown in the figures as circles. Figures 66 and 67 show that

the correlations between various second moment approximations

and the experimental results are very satisfactory.
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CHAPTER 5

FACTORS AFFECTING STCC:ASTIC PREDICTION OF
FATIGUE CRACK PROPAGATION

5.1 Fatigue Crack Growth Analysis Procedures

In the deterministic crack growth analysis, the

following procedures in four steps are used: (i) Experi-

mental results for the crack size, a(t), versus cycles

t (or flight hours), are measured. These test results are

referred to as the primary data. (ii) The crack growth

rate data are derived from the primary data in terms of AK,

log AK or log a(t), etc. using various data processing

procedures. (iii) An appropriate crack growth rate function,
L, is chosen and best-fitted to the derived crack growth

rate data to estimate the pertinent parameters. (iv) The

crack growth rate function and the associated parameters

obtained are used to predict the crack growth damage accu-

mulation under different loading conditions either analyti-

cally or numerically. A schematic illustration of the

deterministic crack growth analysis is shown in Fig. 69.

In the case of probabilistic analysis, primary data

of many replicate specimens are needed. In addition, the

statistical variability of crack growth data should be

determined. Then, the statistical distribution of the

crack growth damage accumulation can be predicted. The

analysis procedures have been described in the previous chapters.
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From the deterministic analysis standpoint, various

kinds of error may be introduced in the sequential steps

of fatigue crack growth analysis described above. For

instance, measurement errors in primary data foi the

crack size, a(t), may result from the instrumentation pre-

cision and sensitivity. The measurement error may be mani-

fested by other factors, such as the incremental measurement

interval, Aa [e.g., Refs. 31-33].

In the second step above, various data processing proce-

dures may be employed, ,luding the direct secant and modified

secant methods, as well as the methods of 3, 5, 7 and 9 point

incremental polynomial. However, each procedure results in

different crack growth rate data. In the third step, bias in

determining the crack growth rate parameters may be induced

by the number of data points associated with each test speci-

men. Finally, prediction errors may be introduced by the

crack growth rate function used. From the standpoint of

stochastic crack growth analysis, the statistical varia-

bility of the crack growth damage accumulation is very

important, yet it may be influenced by various factors

described above. As a result, the problems mentioned above

should be investigated.

In this chapter, only the following two subjects will

be studied: (1) possible bias in estimating the crack

growth rate parameters due to unequal number of fracto-

graphic data (readings) for each test specimen, and (2) the

effect of data processing procedure on the accuracy of the
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stochastic crack propagation prediction. Various factors

affecting the stochastic crack growth analysis will be

reported elsewhere.

5.2 Equal Number of Data Points for Each Test Specimen

Since fatigue crack propagation involves consider-

able statistical variability, some specimens may have

short fatigue lives while others may have longer lives.

Therefore, more crack size measurements (readings) may

be taken for slow crack growth specimens than for fast

ones. This is particularly true for the fractographic

readings of fastener holes where fatigue tests are conducted

on specimens without an intentional preflaw. In fact, all

the fractographic data sets investigated in this report do

not have an equal number of data points for each specimen.

When such primary data are processed and the resulting

crack growth rate data are pooled together for the linear

regression analysis, see Figs. 5-10, the estimated crack

propagation parameters, such as b and Q, are . ised to the

slow crack growth rate side. This is because more data points

are usually measured for the slow crack growth specimens.

As such, it clearly violates the statistical premise that

each specimen (a sample) is of equal weight. Consequently,

the resulting statistical fatigue crack propagation pre-

dictions are biased toward the unconservative side, i.e.,

the stochastic model tends to predict a longer propagation

life or smaller crack size.
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To circur. ent such an error due to an unequal number

of measurements for each specimen, additional data points

for the primary data, i.e., a(t) versus t, can be added

artificially to the fast crack growth specimens. The idea

is to equalize the number of data points for each specimen.

In most cases the artificial points can be determined by

interpolation. However circumstances may arise where

additional data points are needed outside the region of

available primary data, and extrapolation procedures may

not be satisfactory. In this case, it is suggested that

the primary data for a particular specimen be best-fitted

using the crack propagation model. Then the additional data

points outside the available primary data region are obtained

from the model.

To demonstrate such a crucial point, consider the CWPF

data set. Crack growth rate data derived directly from the

fractographic readings using the five point incremental

polynomial method are used to estimate the crack propagation

parameters b and Q, as well as the standard deviation of

the log crack growth rate, az" The results are presented in

Table 4. Also shown in the table are the corresponding

values from Table 1 in which additional data points have

been added artificially to those specimens with fast crack

growth rates to equalize the number of a(t) versus t data

points. Based on the lognormal random variable model, the

distribution functions for the random time to reach some

specific crack sizes are shown in Fig. 28 as dashed curves.
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Also shown in the figure as solid curves are the corre-

sponding results with added data points. The circles shown

in the figure are the experimental results. As expected,

the dashed curves are biased toward slow crack growth and

hence their correlations with the experimental results are

not as good as the solid curves.

5.3 Data Processing Procedures

As described in the previous chapters, the fatigue

crack growth rate parameters as well as the statistics of

the stochastic model are determined from the crack growth

rate data. The former represents the median crack growth

behavior that can be used for deterministic crack propa-

gation analysis. The latter is influenced exclusively by

the statistical variability of the crack growth rate data.

Since, however, the crack growth rate data are derived from

the primary data, their median behavior and statistical

dispersion are affected by several important factors;

(i) The inherent variability of the crack growth

resistance in materials,

(ii) The variability of fatigue loadings and

environments,

(iii) Measurement errors in the primary data,

(iv) The incremental measurement interval Aa in the

primary data, and

(v) The data processing procedures in deriving the

crack growth rate data from the primary data.
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The purpose of establishing the stochastic fatigue

crack growth model is to account for (i) and (ii) above,

although the considerati-on of loading and environmental

variabilities is beyond the scope of the present study.

Hence, the influence by factors (iii), (iv) and (v) should

be minimized.

Various data processing procedures, including the

direct secant method, modified secant method, and 3, 5, 7

and 9 point incremental polynomial methods, have been pro-

posed in the literature [Refs. 8,29,34-36,69]. All the data

sets studied in this report, including the center-cracked

specimens, have been analyzed using each data processing

technique. The statistical variability of the crack growth

rate data varies depending on the data processing method

used. It is found that the secant method introduces a much

larger additional statistical, dispersion for the crack growth

rate data than any of the incremental polynomial methods.

This is not surprising because the incremental polynomial

method tends to smooth out the data. The induced undesir-

able statistical variability of the crack growth rate data

reduces slightly as more points are used in the incremental

polynomial, such as 9 or 7 points. While it may be desirable

to use the 7 or 9 point incremental polynomial method, the

limited amount of data available may inhibit its application.

As a result, the five point incremental polynomial method

appears to be quite reasonable.
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Again, the CWPF data set is considered for illustra-

tive purposes. With the application of the modified secant

method, the estimated parameters b and 0, the standard

deviation, az, and the coefficient of variation, V, of the

crack growth rate are shown in Table 4 for comparison.

Based on the lognormal random variable model and the modi-

fied secant method, the distribution functions of the random

time to reach some specific crack sizes are displayed in

Fig. 28 as dotted curves. It is observed from Fig. 28 that

the modified secant method introduces a larger statistical

dispersion and hence its correlation with the experimental

tests results (circles) is not as good as the five point

incremental polynomial method (solid curves). Similar be-

haviors have been observed in all other data sets. Finally,

poorer correlation is obtained using the direct secant

method than the modified secant method. It is concluded

that, for the stochastic crack growth analysis, the method

of five point incremental polynomial is superior to both

the direct secant and modified secant methods.
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CHAPTER 6

A STOCHASTIC INITIAL FATIGUE QUALITY MODEL
FOR FASTENER HOLES AND DURABILITY ANALYSIS

6.1 Introduction

Metallic airframes contain thousands of fastener holes

which are susceptible to fatigue cracking in service. The

accumulation of relatively small fatigue cracks in fastener

holes (e.g., 0.03" - 0.05") must be accounted for in the

design of aircraft structures to assure that the structures

will be durable and can be economically maintained [2-51.

A durability analysis methodology has recently been

developed for quantifying the extent of fatigue damage in

fastener holes as a function of time and applicable design

variables [6,43-47]. This methodology is based on the frac-

ture mechanics philosophy, combining a probabilistic format

with a deterministic crack growth approach. The initial

fatigue quality (IFQ) of fastener holes is treated as a

random variable and is represented by an equivalent initial

flaw size (EIFS) distribution. The existing durability

analysis methodology has been demonstrated for making crack

exceedance predictions in the small crack size region (e.g.,

<0.10") for full-scale aircraft structure under both fighter

and bomber load spectra [6,45-47,641.
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Further research is now being conducted [661 to: (1)

extend the present durability analysis methodology to the

large crack size region (e.g., >0.10"), (2) refine the

methods for determining a generic EIFS distribution, (3)

develop procedures for optimizing the equivalent initial

flaw size distribution (EIFSD) parameters, and (4) develop

a better understanding of the effects of crack growth rate

dispersion on the EIFS distribution and on the accuracy of

crack exceedance predictions in both the small and large

crack size regions.

In the current durability analysis methodology [6,60,

64,44], the EIFS is determined by back-extrapolating avail-

able fractographic results [e.g., 48] to time zero using a

single deterministic crack growth equation, referred to as

the EIFS master curve,

da(t)/dt = Q[a(t)]b (125)

in which da(t)/dt = crack growth rate, a(t) = crack size at

any time t and Q and b are empirical constants which are

dependent upon the load spectrum and other design para-

meters.

The crack growth rate, however, involves statistical

variability, which is not accounted for in back-extrapola-

tion. Hence, the statistical distribution of EIFS thus

established contains the statistical dispersion of the crack

growth rate in the very small crack size region. This

approach is quite reasonable if the resulting EIFS distri-
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bution is employed to predict the statistical crack growth

damage accumulation in service using a deterministic service

crack growth master curve in the small crack size region.

This has been demonstrated in Refs. 6, 44, 60 and 64. The

main advantage of such an approach is that the durability

analysis procedure can be simplified mathematically.

Another possible approach is to obtain the EIPS values

by back-extrapolating available fractographic results stoch-

astically. Thus, the statistical dispersion of the crack

growth rate in the small crack size region is filtered out,

and the resulting EIFS distribution represents the true

initial fatigue quality (IFQ). Such an EIFS distribution

will have a smaller dispersion than that obtained using a

deterministic EIFS crack growth master curve. This EIFS

model is referred to as the stochastic-based initial fatigue

quality model. In predicting the statistical crack growth

damage accumulation in service using the stochastic-based

EIFS model, however, the stochastic crack growth rate

equation should be used. As a result, the feasibility of

such a stochastic approach depends essentially on the

establishment of a reasonable but simple stochastic crack

propagation model. .

The objectives of this chapter are to: (1) develop the

durability analysis methodology using the stochastic-based

IFQ model, and (2) evaluate proposed EIFS data pooling

methods and procedures for optimizing the EIFS distribution

parameters.
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Analytical expressions are derived for the cumulative

distributions of the time to initiate a crack of any size,

and Lhe crack size at any service life. These expressions

are based on a stochastic transformation of the cumulative

distribution of EIFS and the theorem of total probability.

Actual crack propagation results for two fractographic data

sets (7475-T7351 aluminum fastener hole specimens; fighter

and bomber load spectra) in the small crack size region are

used in the investigation [48]. A correlation study is per-

formed to compare the results of the stochastic-based IFQ

model with actual fractographic results. Very reasonable

correlations were obtained. The proposed procedures for

EIFS data pooling and for optimizing the EIFS distribution

parameters are promising for future durability analysis

applications.

6.2 Application of Lognormal Random Variable Model

The investigation of various stochastic crack growth

rate models presented in the previous chapters is aimed at

possible applications to durability and damage tolerance

analyses as well as the inspection and repair maintenance

problems. From the standpoint of practical applications,

the lognormal random variable model appears to be most ap-

propriate because of the following reasons: (i) It is the

simplest mathematical model for which the analytical solu-

tion is possible for many problems. Likewise, it can easily

be understood by engineers. (ii) The correlation with crack

propagation data in fastener holes is very reasonable, and
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the model always results in a slight conservative prediction.

(iii) The model does not need the correlation parameter for

the crack growth rate, thus eliminating the requirement for

extensive test results. A few crack propagation parameters

and the model statistics can be estimated from a limited

amount of base-line test results, which is usually the case

in practical applications. (iv) The model can be extended

easily to incorporate other statistical uncertainties invol-

ved in the crack growth damage accumulation. This includes

the statistical variability of stress intensity factor,

applied stresses, crack modeling, etc., as will be descri-

bed later [e.g., Refs. 22-24]. As a result, the lognormal

random variable model will be used in the following two

chapters.

The lognormal random variable model for fastener holes

under fighter or bomber load spectra is given by Eq. (37) as

da(t)/dt = XQ(a(t)]b (126)

in which X is a lognormal random variable with a median of

1.0. Such a model has been demonstrated to be very reason-

able, and it simplifies the stochastic crack growth analysis

significantly.

Taking the logarithm of both sides of Eq. (126) yields

Y = bU + q + Z (127)

where

Y = log da(t)/dt , U = log a(t)
(128)

q = log Q , L= log X
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Since X is a lognormal random variable with a median of

1.0, it follows from Eq. (128) that Z = log X is a normal

random variable with zero mean and standard deviation az"

The crack growth rate parameters b and Q as well as the

standard deviation, cz, of Z can be estimated from the log

crack growth rate, log[da(t)/dt] = Y, versus log crack

length, log a(t) = U, data, denoted by (Yi,Ui) for i = 1, 2,

... ,n, using Eq. (127) and the linear regression analysis.

Since Eq. (127) is linear, the results obtained from the

method of linear regression are identical to those of the

method of least-squares or the method of maximum likelihood.

Expressions for b, Q and az are given by

nEUY.i- (YUi) (EYi)

nEU2 - (ZU.) 2

'ZY. - bEU.
Q=0 ; A = 2. i (129)n

z E[Y i- (q - bUi 0] 2 •

S = -i

in which n = number of samples (i.e., crack growth rate data)

and the other terms have been previously defined.

6.3 Stochastic Crack Growth Analysis

Expressions are derived for predicting the cumulative

distributions of crack size at any given. time t and of TTCI

for any given crack size a1 . Essential elements of the

stochastic crack growth approach are described in Fig. 69

and details are provided later.
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6.3.1 Equivalent Initial Flaw Size (EIFS) Concept

An equivalent initial falw size (EIFS) is a hypo-

thetical initial falw assumed to exist in a structural detail

which characterizes the equivalent effect of actual flaws

produced by the manufacturing process. Such flaws must be

consistently defined so that the EIFSs for different fracto-

graphic specimens are on the same baseline. EIFSs are defined

by back-extrapolating suitable fractographic results to time

zero (Fig. 69, Frame A). The objective is to define a sta-

tistical distribution of EIFS and then to verify that the I
derived distribution will provide reasonable predictions for

the cumulative distributions of TTCI and a(t) (Fig. 69, Frame

D and Fig. 70).

6.3.2 Analysis Procedures

1. EIFS is a random variable and each individual, value

is determined by back-extrapolating fractographic

results for each individual crack (or specimen).

2. The population of EIFSs is fitted by a suitable

cumulative distribution, denoted as F a(O) (x) (Fig.

69, Frame B).

3. A stochastic crack growth law, such as Eq. (126),

which accounts for the statistical dispersion of

the crack growth rate (Fig. 69, Frame C), provides

the basis for growing flaws backward and forward.

4. A stochastic transformation of Fa() (x) is made

using the crack growth law, Eq. (126), to obtain
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expressions for the cumulative distributions of

crack size, Fa(t) (x), and of TTCI, FT(al) (t),

Fig. 70.

6.3.3 Crack Size-Time Relationships

Two different crack size-time relationships can

be obtained by integrating Eq. (126), considering b = 1 and

b 9 1, from t = 0 to any time t. The resulting expressions

for b - 1 and b # 1 are shown in Eqs. (130) and (131), respec-

tively,

a(t) = a(0)exp[XQtl b= 1 (130)

a(t) = {[a(0)]-c- cQtX}-i/c ; b , 1 (131)

where, a(t) = crack size at any time t, a(0) = crack size at

t = 0 (EIFS), Q = crack growth rate constant, c = b - 1, and

X = lognormal random variable with median of 1.0

6.3.4 Cumulative Distribution of EIFS
Various distribution functions defired in the

positive domain may be used to fit the EIFS values, such as

the Weibull, lognormal, beta, etc. The following distribu-

tion function, which is derived based on the three-parameter

Weibull distribution for TTCI and the deterministic crack

growth law of Eq. (125) with b = 1, will be used herein;

75



fa(O)(x) = exp )} 0 x x - (132)
x xu

=I1.0 x x= x
u

in which F a()(x) = P~a(O) < x] is the cumulative distribu-

tion of EIFS, indicating the probability that the EIFS, a(O),

will be smaller or equal to a value x. In Eq. (132), xu =

upperbound of EIFS and a and 0 are two empirical constants

[61. In the original derivation of Eq. (132) in Ref. 6, the

notation "QW" was used instead of "4". To distinguish be-

tween the deterministic and stochastic crack growth appro-

aches, the notation "0" is used herein. The expression

given by Eq. (132) is considered to be reasonable for the

distribution of the stochastic-based FIFS.

6.3.5 Cumulative Distribution of Crack Size

The conditional distribution function of the crack

size a(t), denoted by Fa(t)(xlz) = Pla(t)<xlX=z], given that

the lognormal random variable X takes a value z, can be
obtained from Eq. (132) through a transformation of Eqs. (130)

and (131) for b = 1 and b 3 1, respectively. Then, the uncon- r

ditional cumulative distribution of crack size a(t), Fa(t)(x)

= P[a(t)<x], is obtained from the conditional one, Fz(t)(xlz),

using the theorem of total probability. The results for

Fa(t) (x) are shown in Eqs. (133) and (134) for b 1 and b • 1,

respectively.
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I°°t- + in x ./x c
Fa(t)(x) = ex U fx(z)dz (133)

0
for b= 1

fex { c Znxu + in (x + ctz)

Wexp I c (z)dz (134)
0

for b# 1

In Eqs. (133) and (134), fx(z) is the lognormal probability

density function of X given by

fx(z) = log e exp -(l z)2 1 (135)

in which 7 is the standard deviation of the normal random

variable Z = log X given in Eq. (128).

6.3.6 Cumulative Distribution of TTCI

Let T(a 1 ) be the random time to initiate a crack

size a1 . Then, the distribution of T(aI), denoted by FT(a )(t)

= P[T(al)<t], can be derived from that of a(t) as

follows. Since the event {T(al)<t} is the same as the event

{a(t)>a 1 ), one has

F T (t ) = 1 - F( I 1 6T(aI) M 1 Fa(t)(al) (136)

Substituting Eqs. (133) and (134) into Eq. (136), one obtains

for b = 1 and b 7 1, respectively,
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eIrozt + tn N /al) (IfXzd(17
FT(a 1 ) (t) 1 - Jexp1 ~ - U 1  fx(z)dz ; (137)

for b= 1

F (ta Goj exp~[ cnxu + nl(a, + cQtz)1a f()dFT(al)() =1 x " c* xzd

0 
(138)

for b •l

in which fx(z) is given by Eq. (135).

Equations (133)-(134) and (137)-(138) are not amenable

to analytical integrations. However, these equations can

easily be solved by a straight-forward numerical integration.

6.4 Determination of EIFS Distribution Parameters

Procedures are described and discussed for determining

EIFS values based on the stochastic crack growth approach

and fractographic data. EIFS pooling concepts and justifi-

cation are considered and procedures are described for opti-

mizing the EIFS distribution parameters in Eq. (132), i.e.,

xu, a and *. For brevity, the discussion is limited to the

b I case.

6.4.1 Stochastic-Based EIFS

EIFS values are determined by back-extrapolating

suitable fractographic data based on fatigue cracking re-

sults in fastener holes without intentional initial flaws.

Such data are currently available for both straight-bore

and countersunk fastener holes [e.g., 48,65].
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When the deterministic crack growth approach is used

[6,67,681 to determine EIFSs, the same EIFS master curve

is used to back-extrapolate to time zero for each fatigue

crack in the fractographic data set. In this case the

statistical dispersion of the crack growth rate is included

in the resulting EIFS values.

When the crack growth rate is treated as a stochastic

process, such as Eq. (126), the fractographic results should

be back-extrapolated to time zero using the applicable crack

growth records for a given fractographic sample (specimen).

A stochastic-based EIFS value is obtained for each fracto-

graphic sample in the data set. In this case, the statis-

tical dispersion of the crack growth rate is reflected in the

random variable X and hence it is filtered out from the EIFS.

A stochastic-based EIFS value can be obtained for a

given fractographic sample, say jth specimen, based on

aj (0) = aj (t)exp[-XjQt] (139)

in which X. is the jth sample value of the lognormal random

variable X, and a.(0) and a.(t) are the corresponding jth

sample values of EIFS and the crack size at time t, respec-

tively.

Using the least squares criterion, one obtains the

expression for a (0)

NZt 2 (Eti)
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in which a.(ti) = crack size of jth specimen at time t. and N

= number of [aj(ti),ti] pairs for the jth fractographic sam-

ple. Thus, using Eq. (140), a.(0) can be determined directly

from (a.(ti),ti] pairs without computing the X.Q value in Eq.

(139).

It has been shown that the range of the fractographic

crack size used affects the EIFS values [64]. Therefore,

EIFS values should be determined using fractographic results

in the same crack size range. For example, the upper and

lower bounds of the crack size range is denoted by au and a.

as shown in Fig. 69, Frame A.

6.4.2 EIFS Pooling Concepts

For practical durability analysis, an EIFS distri-

bution is needed to represent the initial fatigue quality

variation of the fastener holes. Ideally, such a distribution

can be determined for a given material, fastener hole type

(e.g., straight-bore or countersunk) and drilling procedure

from fractographic results reflecting different test vari-

ables (e.g., stress level, % bolt load transfer and load

spectra). The resulting EIFS distribution can be used to

perform durability analyses for other conditions. In other

words, an EIFS distribution (EIFSD), based on different

fractographic results, is sought which is suitable for a

broad range of durability analysis applications (e.g., dif-

ferent stress levels, % bolt load transfer and load spectra).

One way to justify using a given equivalent initial flaw

size distribution (EIFSD) for a general durability analysis
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is to define the EIFSD parameters using pooled EIFS values

obtained from different fractographic data sets. For ex-

ample, fractographic results are available for the same

material, fastener hole type/fit and drilling procedure for

different stress levels, % bolt load transfer and load

spectra (48,65]. If compatible EIFSs can be determined for

different fractographic data sets, then the EIFSs can be

pooled to determine the EIFSD parameters. Pooling the EIFSs

is very desirable because this increases the sample size and

therefore the confidence in the EIFSD parameters. Also,

since different fractographic data sets are used to determine

the EIFSD parameters, it forces the derived EIFSD to cover a

wider range of variables.

6.4.3 Optimization of EIFS Distribution Parameters

Once the EIFSs have been determined for selected

fractographic data sets, they can be pooled and the para-

meters xu, a, and ý can be optimized to "best fit" the pooled

EIFSs to the theoretical cumulative distribution, Fa(O) (x),

shown in Eq. (132). The optimization procedure described

below is intended for Eq. (132) but the same ideas can be

"applied to other Fa(O) (x) distributions.

In Eq. (132), x defines the EIFS upper bound limit,
U,.

i.e., the maximum initial flaw size in F (x). A value of

xu = 0.03" is assumed to be a reasonable upper bound limit

for the EIFSD. This limit is arbitrarily based on the

typical economical repair limit for fastener holes [6,43,67,

68]. Another reason for limiting x to <0.03" is to
u
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eliminate the probability of exceeding a crack size of 0.03"

at time zero. This is equivalent to assuming that no fasten-

er hole will have an initial flaw size >0.03". If a larger

xu limit is used, then the probability of exceeding an ini-

tial flaw size of 0.03" will not be zero, which implies that

some fastener holes could have an initial flaw size greater

than the economical repir limit before the structure enters

into service.

The EIFSD parameters xu, a and * in Eq. (132) are opti-

mized using the following iterative procedure.

1. Assume a value of xu. largest EIFS < xu < 0.03".

2. Compute a and 4 by least-squares fitting the pooled '

EIFSs to Fa(O) (x) given in Eq. (132). Equation (132) is

transformed into the following linear least-squares fit form,

W = aV + B (141)

where

W = 2n {-nF (x)}; V = kn{n(x /X))}
a(0) u

(142)

B -atný

Let x. (i=l,2,...,N) be the ith smallest EIFS sample value

with N being the pooled sample size of EIFS values. The

distribution function corresponding to x. is given by

Fa(O) (x.) = i/(N+l). Then the parameters a and ý in Eq.

(141) can be determined using the following least-squares

fit equations,
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N EViWi - ( .Vi) (EW i) e eVi - EWi(

NEV - ( .Vi) 2 N(

where Vi and Wi are the sample values of V and W associated

with xi and Faa(()(Xi), respectively, as defined in Eq. (142).

3. Compute the goodness-of-fit of the established

F (x) for the given xu, a and •. The standard error and

Kolmogorov-Smirnov statistics (K-S value) are two reasonable

measures of goodness-of-fit tests. The standard error,

denoted by aE, is expressed as

CF N -Fa(0)(x) (144)
aE = N(14

in which all the EIFS sample values are arranged in an ascend-

ing order (xl,X 2 ,...,xk,...,xN) , k = rank of EIFS value and

N = total No. of pooled EIFS samples.

Let SN(x) be the empirical distribution of the EIFS

values defined as follows; SN(x) = 0 for x <xl; SN(x) = k/N

for Xk.<x <Xk+l; SN(x) = 1 for x >xN' Then, the K-S statis-

tics, denoted by D is the maximum absolute difference' ~~max '- 
"

between the empirical distribution SN (x) and the theoretical

F (x) values given by
a(0)

maxi SN(x) - F (x)
Dmax x IN Fa(O)

4. Steps 1-3 are repeated to minimize the standard

error rE and K-S value Dmax'
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6.4.4 Determination and Normalization of Forward Crack

Growth Rate Parameters

The statistical distribution of the crack growth

damage in service, such as Fa(t) (x) and FT(al) (t) given by

Eqs. (133)-(138), is derived using the EIFS distribution,

Fa(0) (x), and the forward stochastic crack growth rate

equation, Eq. (126). The parameters b, Q and a appearing

in Eq. (126) have been obtained in Eq. (129) when the frac-

tographic data for the applicable service environment are

available. When the fractographic results are not available,

however, these parameters should be determined from the

general crack growth computer program. This subject will be

discussed in another document.

When pooled EIFS results are used to determine xu, a and

in Eq. (132), the Q value for a given fractographic data

set should be normalized to the same baseline as the EIFSD.

This is needed to assure that Fa(t) (x) and FT(a) (t) predic-

tions for a given data set are consistent with the basis for

the EIFSD.

Let (xulaOdata set and Qdata set be, respectively,

the EIFSD parameters and the forward crack growth rate para-

meter using a given fractographic data set alone (without

pooling procedures). Then, the normalized Q values for such

a given data set, denoted by Qdata set' in the forward crack

growth analysis is suggested to be
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A Set - cFPooled a (146
QData Set =Data Set (QDat Set)

Thus, when pooled EIFS results are used, the Q value appear-
ing in Eqs. (133)-(138) for a given fractographic data set
should be replaced by Qdata set* This approach will be

illustrated in the following correlation study.

6.5 Correlation With Test Results 
Aw

ON

Fatigue crack growth results are available for fatigue

cracking in fastener holes without the presence of inten-

tional initial flaws [e.g., 48]. Two fractographic data sets

from Ref. 48 will be used to evaluate: (1) the stochastic-

based IFQ model developed, (2) the proposed EIFS data pooling

procedure, (3) the procedure for optimizing the EIFSD para-

meters and (4) the effectiveness of the derived EIFSD and

stochastic crack growth approach for making F (x) and
a (t)%

FT(al) (t) predictions. The distribution of the crack size,

Fa(t) (x), will be considered at two different service times

and that of TTCI, F (t), will be considered at crack

sizes a= 0.03", 0.05" and 0.10". Predicted results will

be compared with actual fractographic data.

6.5.1 Fractographic Data Sets 
'9

Two fractographic data sets, identified as "WPF"

and "WPB", reflect 7475-T7351 aluminum, replicate dog-bone

specimens with a 1/4" diameter straight-bore, centered hole

containing an unloaded protruding head steel bolt (NAS6204)
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with a clearance fit. The "WPF" and "WPB" data sets were

fatigue tested in alab. air environment using a fighter

spectrum and bomber spectrum, respectively. A maximum gross

section stress of 34 ksi was selected for each spectrum. The

test specimens were fatigue tested without intentional flaws

in the fastener hole and natural fatigue cracks were allowed

to occur. Following the fatigue test, the largest fatigue

crack in each fastener hole was evaluated fractographically.

FPactographic results (i.e., a(t) versus t records) were pre-

sented in Ref. 48. The number of fatigue cracks used in this

invstigatiozn is 33 for the WPF data set and 32 for the WPB N

data set.

6.5.2 EIFS Parameters

EIFSs for each fatigue crack in the WPF and WPB

data sets were computed using Eq. (140) and the fractographic

results in the crack size range from 0.01" to 0.05". The

ranked EIFSs for the WPF and WPB data sets are summarized in

Table 5 in an ascending order of crack size.

EIFSD parameters xu, a and 0 were determined using the

EIFS values for the WPF, WPB and combined WPF and WPB data

sets. Different values were assumed for x and the corre-u

sponding a, 4, standard error aE and Dmax (K-S) values were

determined using Eqs. (142)-(145), respectively. The results

are summarized in Table 6.

6.5.3 Goodness-of-Fit Plots

EIFSD parameters based on xu= 0.03 were used to

make predictions for Fa(t) (x) and FT (a) (t) based on Eqs. (133)
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and (137), respectively. The upper bound value of xu =0.03"

was used because the standard error, aE' and the K-S value,

D max, "indicators" for the EIFSD goodness-of-fit shown in

Table 6 were smaller than those values for x <0.03".u

The forward crack growth parameter Q in Eqs. (126),

(133) and (137) and the standard deviation of the crack

growth rate, az, were estimated for each data set (i.e.,

WPF and WPB) using the applicable log da(t)/dt versus log a(t)

data and Eq. (129) with b = 1. Crack growth rates, da(t)/dt,

were determined for each fatigue crack in each fractographic

data set based on the 5-point incremental polynomial method

[69]. A typical plot of log da(t)/dt versus log a(t) is

shown in Fig. 71 for the WPF data set.

Normalized Q values, denoted by Q, were determined for

each data set using Eq. (146) for individual and pooled EIFS

A -4data sets with the following results: Q = 2.708xi0 (WPF)

and Q = 1.272x10 4 (WPB). Results of Q, Q and a are sum-

marized in Table 7.

With the durability analysis approach using the sto-

chastic -based EIFS model described above and the parameters

presented in Table 7 for the six cases considered, the dis-

tributions of the crack size at any service life, Fa(t) (x),

and the TTCI at any crack size can be predicted theoretically,

using Eqs. (133) and (137), respectively.

The cumulative distribution of crack size at two differ-

ent service times (WPF at 9,200 and 14,800 flight hours, and

WPB at 29,109 and 35,438 flight hours) are plotted in Figs.
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72-77 ts a solid curve for the theoretical predictions. The

experimental results are also plotted in these figures

using selected symbols. For example, in Fig. 72 the results

fcr t = 0, 9,200 and 14,800 flight hours are denoted by an

open circle, a star and a square, respectively. In Figs. 73

and 74, an open circle and a solid circle denote the EIFS

values at t = 0 for the WPF and WPB data sets, respectively.

Plots fo theoretical predictions of the cumulative dis-

tribution of TTCI at crack sizes 0.03", 0105" and 0.1' are

shown as solid curves in Figs. 78-80 and Figs. 81-93 for the

WPF and WPB data sets, respectively. The correspý,,ding ranked

TTCI test results are displayed in these figures as a circle,

star and square, respectively. Symbols for the WPF data set

are open and those for the WPB data set are solid.

The following observations are based on Figs. 72-77:

1. The theoretical predictions for Fa(t) (x) generally

fit the overall test results better when the EIFSs for a

given data set are sued (e.g., see Fig. 72 and 75).

2. When the EIFSD parameters are based on the pooled

EIFSs for the WPF and wPB data sets, the theoretical pre-

dictions for Fa(t) (x) for a given data set generally cor-

relate better with the ranked experimental results when the

crack growth parameter Q is normalized using Eq. (146). For

example, compare the plots shown in Figs. 73 and 74 and Figs.

76 and 77 for the WPF and WPB data sets, respectively.

3. The upper tail of Fa(t) (x) (i.e., largest crack

sizes) is of most interest for durability analysis. For all
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the cases considered herein the theoretical predictions for

crack exceedance (i.e., p(i,T) = 1-F a(T)(xl) in the upper

tail generally fit the ranked experimental results very well.

In Fig. 76 the theoretical predictions for F a(t(x) for the

WPB data set are conservative in the upper tail (i.e., the

predicted crack exceedance is larger than the ranked test

results). In this case, the Q value is not normalized. The

goodness-of-fit improves significantly when Q is normalized.

4. It is interesting to note that reasonable Fa(t) (x)

predictions are obtained for crack sizes larger than the

fractographic crack size range used to determine the EIFSD

parameters (i.e., 0.01"-0.05"). This is encouraging.

The following observations are based on Figs. 78-83.

1. The lower tail (i.e., smallest TTCIs) of the TTCI

cumulative distribution, FT(a 1 ) (t), is generally the area of

most interest for durability analysis. As shown in Figs.

78-83, the theoretical predictions for F (t) correlate
T(a)

very well with the ranked experimental results.

2. The overall tit is generally improved when Q is

normalized. For example, compare results for Fig. 79 and 80

and Fig. 82 and 83 for the WPF and WPB data sets, respec-

tively.
3. Reasonable F T(a (t) predictions for the WPF and

WPB data sets are obtained in the lower tail for a= 0.10"

see Figs. 80 and 83. Thus, reasonable FT(a1) (t) predictions

are obtained for a crach size outside the fractographIc

crack size range us.d to define the EIFSD parameters.
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6.6 Conclusions for Stochastic IFQ Model for Durability

Analysis

Expressions have been developed for predicting the cumu-

lative distribution of crack size at any given time, and the

cumulative distribution of times to reach any given crack

size using the stochastic-based EIFS model. These expres-

sions, based on a stochastic crack growth approach, have

been evaluated for the durability analysis of fastener holes

in the small crack size region (e.g., <0.10"). The analy-

tical expressions for Fa(t) (x) and FT (a 1 ) (t) are derived

based on a stochastic transformation of the theoretical

EIFSD. EIFS data pooling concepts and procedures for opti-

mizing the distribution parameters have been presented and

evaluated.

Theoretical predictions for F a (x) and F a (t)

compared reasonably well with ranked experimental results

when both the WPF and WPB data sets were considered separ-

ately. Overall fits based on pooled EIFS values for both

WPF and WPB data sets were improved when the normalized

crack growth parameters were used. EIFS distributions based

on normalized crack growth results need to be investigated

further for a wide range of practical durability analysis

situations. r.

The upper tail of the EIFSD is of most interest for

durability analysis because the large initial flaws are

more apt to cause crack exceedance problems than the smaller
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initial flaw sizes. The EIFSD can be force-fitted to the

upper tail of the EIFS population. This may provide an even

better fit of the EIFSD to the tail area of most interest

(70). This aspect needs to be investigated further.

The EIFS pooling concepts and procedures for optimizing

EIFS distribution parameters are promising for determining a

reasonable EIFSD for practical durability analyses. Further

research is needed to determine the EIFSD parameters based

on pooled EIFSs for several fractographic data sets and to

evaluate the accuracy and limits of the durability analysis

predictions in the small crack size region (e.g., <0.10").

A parallel investigation to the one described herein

has been performed using the deterministic crack growth

approach [66]. The results of this investigation will be

reported in the future. Based on the results for the sto-

chastic and deterministic crack growth approaches, it is

concluded that either approach is satisfactory for the dura-

bility analysis of aluminum alloys in the small crack size

region. However, since the deterministic crack growth ap-

proach is mathematically simpler, this approach is recom-

mended for use in the small crack size region. Further

research is needed to show that the deterministic crack

growth approach is also satisfactory for other alloys in the

amall crack size region. Also, the deterministic and sto-

chastic crack growth approaches need to be investigated for

durability analysis applications in the large crack size

region.
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CHAPTER 7

FATIGUE RELIABILITY OF STRUCTURAL COMPONENTS UNDER
SCHEDULED INSPECTION AND REPAIR MAINTENANCE

Fatigue cracking is one of the most important damage

modes in aircraft structures. To prevent catastrophic fail-

ure, fatigue-critical components, such as wings, fuselages,

gas turbine engine disks, etc., are usually subjected to

scheduled inspection or proof test maintenance. In order

to establish an optimal inspection and repair or proof test

maintenance in terms of, for instance, minimum life-cycle-

cost criteria, the effect of scheduled maintenance on the

component reliability should be determined (Refs. 22-24,43,

71 -78]. In such a reliability analysis, however, many quanti-

ties involving statistical variabilities should be considered,

for instance, the initial fatigue quality, crack propagation

rate, service loading spectra, nondestructive evaluation

(NDE) systems, etc.

Under scheduled inspection and repair maintenance in

service, a fatigue reliability analysis methodology is

presented for non-redundant fatigue-critical airframe com-

ponents, in which fastener holes are critical locations.

Various statistical variables mentioned above have been

taken into account. The fatigue reliability is shown to be

influenced significantly by the scheduled inspection main-

tenance as well as the capability of the NDE system employed.
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Both the fatigue reliability in service and the average

number of fastener holes to be repaired are presented in

this chapter. These are important inputs for the life-

cycle-cost analysis of airframe structures. A numerical

example for the crack propagation in fastener holes of an

F-16 lower wing skin has been worked out to demonstrate the

application of the analysis methodology.

7.1 Formulation

For simplicity of presentation, service inspection main-

tenance is assumed to be periodic with the inspection inter-

val, T, as shown in Fig. 84. A fastener hole is repaired

when a crack is detected. After repair, the fatigue quality

is assumed to be renewed, in the sense that the crack size

distribution is identical to that of the new fastener hole.

One important quantity in the fatigue reliability

analysis is the initial fatigue quality (IFQ) that defines

the initial manufactured state of a structural detail or

component prior to service. For aluminum alloys used in

airframe structures, it has been shown in Chapter 6 that

the initial fatigue quality can be represented by the equi-

valent initial flaw size (EIFS). The equivalent initial flaw

size is determined by back extrapolation of fractographic

data obtained from laboratory tests.

The cumulative distribution, Fa(O) (x) =P[a(O)<x], of the

EIFS, a(O), is suggested to have the following form in

Chapter 6:
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FaW()(X) = exp { 0<(xU/X)]1  Ox<_xu

(147)

= 1.0 x X>x

in which xu is the upper bound, and a and 0 are parameters.

After the distribution of the EIFS is defined, the entire

fatigue process can be described by the stable crack propa-

gation until fracture.

The lognormal random variable model for the crack growth

rate is employed for predicting the statistical crack growth

damage accumulation,

da(t) = XQ[a(t)]b (148)
dt (

in which X is a random variable introduced to take into

account various contributions to the crack growth rate

variability in service. It is expressed as

X = H1 H2 Sv (149)

in which H1 , H2 and S are random variables denoting the con-

tributions to the statistical variability of the crack

growth rate from various sources. H1 represents the material

crack growth resistance variability, H2 represents the crack

geometry variability or stress intensity factor variability,
I

and S represents the variability of service loading spectrum

with respect to the nominal design loading spectrum, and v

is a constant [Refs. 6,22-231.
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All the random variables Hl, H2 and S are assumed to

follow the lognormal distribution with a median of 1.0. Then,

it follows from Eq. (149) that X is a lognormal random

variable with a median of 1.0. Hence,

Z = log X (150)

is a normal random variable with a mean value Uz 0 and

standard deviation az given by

2+ + v2 a 2•1/2az = [a H+l H2 + va(151)

in which a , a and as are the standard deviations of

H1i H 2  s

H1 , H2 and S, respectively.

Since X is a lognormal random variable with a median of

1.0, the distribution function Fx(z) = P[X<zl is given by

F Wz = 0(log z (152)

in which az is the standard deviation of Z = log X given

by Eq. (151), and the corresponding probability density

function of X, denoted by fx(z), is given by

f() e x - 2LOz J ; O<z (153)X /T77*Z a 2 L~J

Current nondestructive evaluation (NDE) systems are not

capable of repeatedly producing correct indications when

applied to fl-ws of the same length. As a result, the pro-

bability of detection (POD) for all cracks of a given length

has been used in the literature to define the capability of
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a particular NDE system in a given environment.

The probability of detection (or POD curve) of an NDE

system can be expressed as
F =POD(a) exp(a* + 8*£na) O<a (154)

FD(a) 1+exp(a* + $*Ina)

in which FD(a) = POD(a) is the probability of detecting the

crack size "a", and a and a dre constants. Equation (154)

is referred to as the log odd function [e.g., Refs. 79-801.

Let ac be the critical crack size at which failure of

a non-redundant structured component occurs. Without the

inspection and repair maintenance, the probability of failure

in any service time interval (0,T), denoted by p(T), can

be obtained from Eq. (138) of Chapter 6 by replacing a1 and

t by ac and T, respectively, as follows

p(T) = 1- exp -[ u nf(z)dz (155)

0

With the implementation of scheduled inspection and

repair maintenance procedures, the structural reliability

depends on the NDE capability and the frequency of inspec-

tion (or service inspection interval T). The solution is

derived in the following.

7.1.1 In the First Service Interval (0,T)

The crack size a(T) at the end of the first service

interval prior to inspection maintenance is related to EIFS,

a(0), through the integration of Eq. (148) from t = 0 to T,
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a(T) = a(0) (156)
R1 - ac (0)cQTX) i/c

in which c = b-1 and both a(0) and X are random variables.

Let fa(T) (xlz) be the conditional probability density

function of the crack size a(T) given X - z. Then,

fa(T) (xlz) can be obtained from the distribution of a(O)

given by Eq. (147) through the transformation of Eq. (156);

with the result

fa(T) (Xz) = fa(0 ) [Y(X;T'Z)]J(x;TZ) (157)

in which

Y(x;T,z) = ( x 1/C (158)(1 + X CcQTZ)l

J(X;T,Z) = 1 I/ + (59
(l +xCcQTz)I/c +1 (159)

The unconditional probability density function of a(T) is

obtained from the conditional one using the theorem of

total probability,

fa(T) W = f a(O) [Y(x;Tz)lJ(x;TZ)fx(z)dz (160)

in which the probability density function of the lognormal

random variable X,denoted by fx(z), is given by Eq. (153),

and fa(0) (x) is the probability density function of EIFS,

a(O) , obtained from Eq. (147) as fa(O) (x) = dFa(O) (x)/dx,

i.e.,
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w

W ( [ Rn(xu/x) ex ( 0<x<x
Lx 1 , (161)

-0 ; x>xu

The probability of failure in the first service interval

(0,T) for one fastener hole, denoted by p(l), is the pro-

bability that the crack size a(T) will be greater than the

critical crack size act i.e.,

p = J a(t) (x)dx (162)
fa

in which fa(T)(x) is obtained in Eq. (160). It is mentioned

that the probability of failure, p(l), in the first service

interval can also be computed from Eq. (155) in which T is

replaced by T.

A fastener hole is repaired when a crack is detected

during the inspection maintenance. The probability of

repairing a fastener hole (or the probability of detecting

a crack in the fastener hole), during the first inspection

maintenance at T, denoted by G(l), is given by

0acI
G(l) = f (x)FD(x)dx (163)

in which FD(x) is the probability of detecting a crack size

x given by Eq. (154).

After the first inspection maintenance at T, the pro-

bability density of the crack size a(T ) is modified, because

of possible repair,
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f (+xW = G (l) fa W +F((x) ; x<ac (164)fa(T+ ax =G1a(0) ()FD( fa (T)

in which the first term is contributed by the renewal popula-

tion (repaired fastener hole) with probability G(1) and P*(x)

is the probability of not detecting (missing) a crack of

size x during inspection,
'.,

FD(x) = 1 - FD(X) (165)

where FD(x) is give by Eq. (154).

The corresponding conditional probability density

function of the crack size after inspection, a(T+ ), under

the condition that x = z, denoted by fa(t+) (xlz), can be

shown, using Eqs. (157) and (164), as follows,

fa (T+) (xIz) = G(1)f (x) +F*(x) f [Y(x;T,z)]J(x;T,z)

ar)a(O) D a(O)

(166)

7.1.2 In the Second Service Interval (T,2T)

The crack size a(2T) at the end of the second service

interval 2T for the original population (fastener holes

without being repaired at T) is related to a(O) through

Eq. (156) with T being replaced by 2r,

a(2T) a(O) (167)
[1 - aC(O)cQ2TX]I/c

The conditional probability density function of a(2T)

given X = z, denoted by fa(2 )(xlz), is contributed by two
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populations; the original population (fastener holes) that

is not repaired at T, and the fastener holes repaired at T,

referred to as the renewal population, with probability

G(l), see Eq. (163). Through the transformation of random

variables, the results can be obtained from Eq. (166) by

the following replacements, x÷Y(x;T,z), Y(x;T,z))Y(x;2T,z),
J(X;T,z)J(x;2T,z) a(0) a(0) [Y(x;T,z)]J(x;t,z) ; with

the result

fa(2-0 (xlz) = G(l)fa(O) [Y(X;T,z)lJ(X;T,z) + FD[Y(x;T,z)]

S[Y(x;2T,z)]J(x;2T,z) (168)"a(O)

in which an additional condition is imposed on FD, i.e.,

FD(Y) = 0 for Y >ac. In Eq. (168), Y(x;T,z) is the crack 1

size at T which grows to x at 2T. Therefore, if Y(x;T,z)

is greater than ac, the component would have failed in the

previous service interval already. The unconditional pro-

bability density function is given by

-OD.

f W(x)P*YXT= Yx2TZ1~;,,za (2Tr) D]a

ofx(z)dz +G(1) fa(O) [Y(x;T,z)) J(x; T,Z)fx(z)dz

(169)

The probability of failure in the second service inter-

val (T,2T) for a fastener hole is equal to the probability

that a(2T) is greater than the critical crack size ac, i.e.,

p(2) = fa(2T) (x)dx (170)
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and the probability that a fastener hole will be repaired

at 2T is given by

a
C

G(2) = fJ a(2-) (x)FD(x)dx (171)

7.1.3 In the nth Service Interval [(n-l)T,nT]

Owing to crack propagation, the crack size and its

probability density in a fastener hole increase as a function

of service time. Meanwhile, the probability density is also

subjected to modifications during each inspection and repair

maintenance. Following a similar procedure described above,

the probability density function of the crack size, a(nr),

at nT right before the nth inspection maintenance, can be

obtained in a recurrent form,

Wa(nT) (x) = fJ(nT) (xlz)f,(z)dz (172)

where fa(nT) (xlz) is the conditional probability density -

of a(nT), under the condition that X = z,

fa~• (xlz) * D[gl(x;mT',Z) I fa ) [Ylx;nIT,z)]
a(nT) Dxlz)

n-1

•J(x;n-r,z) + X G(n-k)Ak ; for n=2,3,...
k=1

(173)
f:

in which the first term is contributed by the original popula-

tion i"Lroduced at t = 0 (i.e., fastener hole without being

repaix.ed), and the second summation term is contributed
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by the renewal populations (repaired fastener holes) intro-

duced at n-kth inspection maintenance (k=l,2,...,n-l).

In Eq. (173), G(n-k) is the probability of repairing

a fastener hole at (n-k)T (i.e., at n-kth inspection

maintenance) , and

k 1= IFD[Y(x;mT'z)]fa(O) [Y(x;kT,z)Jlj(x;kT,z) (174)

in which Y(x;m-T,z) and J(x;kT,z) are given by Eqs. (158)

and (159) with T being replaced by mT and kT, respectively,

i.e.,

Y(x;mT,z) = x(175)
(1 + xCcQmTz)I/c

J(x;kT,z) = 1 (176)(1 + xCcQkTz) i/c + 1

k-i
It should be mentioned that in Eq. (174), Y FDLY(x;m¶z)]

m= 1

1 for k =1 and FDFY] = 0 for Y >aD ac

The probability of failure in the nth service interval

[(n-l)T,nT], denoted by p(n), is obtained as

p(n) = f a(nT) (x)dx for n=2,3,... (177)
C

and the probability of repairing a fastener hole, G(n), during

the nth inspection maintenance is given by

G(n) f (X)FDX)dx ; for n=2,3,... (178)G~) a (nT) D
0
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Equations (172)-(178) are the recurrent solutions for n =

2,3,..., where the solutions for n = 1 are given by Eqs.

(160)-(163).

The cumulative probability of failure for a fastener

hole in n service intervals (O,nT), denoted by P(nT), is

given by

n
P(nT) R1 - E Cl - p(j)] (179)

j=l

When the fatigue-critical component consists of M fastener

holes and the component will fail if one or more fasteners

fail, then the cumulative probability of failure of the

entire component in the service interval (0,nT), denoted by

PM(nT), is given by

PM(nT) = 1 - [1 - P(nT)] n (180)

When the stress level in each fastener hole is not

identical, the probability of failure in each fastener hole

varies. In such a case, the cumulative probability of

failure in (O,nT) for the mth fastener hole, denoted by

p(n'r,m), can be obtained in a similar manner, e.g., Eq.

(179). Then, the cumulative probability of failure of the

entire component consisting of M fastener holes is obtained

as

M
PM (nT) H- - P(nT,m)] (181)
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7.2 Demonstrative Example

Fatigue crack growth damage accumulation in fastener

holes of a F-16 lower wing skin shown in Fig. 85 is con-

sidered. Extensive investigations indicate that the initial

fatigue quality of aluminum fastener holes can be repre-

sented by the distribution of the equivalent initial flaw

size (EIFS).

The distribution function of EIFS for countersunk

fastener holes in lower wing skins subjected to F-16 load

spectra is given by Eq. (147) with a = 1.823, xu = 0.03 in.

and 4 = 1.928 [Ref. 6]. The lower wing skin is divided

into ten (10) stress regions, Fig. 85. In each stress

region, the maximum stress level in each fastener hole is

approximately identical. The stress region No. 7 near the

cut-out is subjected to the highest maximum stress level of

32.4 ksi (223.5 MPa) in the F-16 400 hour spectrum [Ref. 6].

This stress region containing eight (8) fastener holes is

assumed to ba safety critical. The crack propagation para-

meters in this stress region are found to be Q = 1.3504x10- 4

b = 1.01, Eq. (148). The coefficient of variation of the

crack growth rate is VX = 30% and hence aZ = Vkn(l+V2)/knl0

= 0.1276. One design life for the alrcraft is 8,000 flight

hours, and the reliability of such a critical stress region

up to two life times, i.e., 16,000 flight hours, will be

investigated. The critical crack size ac is assumed to be

0.2 inch.
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Fastener holes are repaired when cracks are detected.

Hence, the cost of repair depends on the size of the detected

crack. When the crack size in fastener holes is smaller

than 0.03 inches to 0.05 inches, depending on the location of

the fastener holes, repair can be made by reaming the fastener

hole to the next hole size. This is the most economic repair

procedure. When the crack size is larger, a retrofit repair

procedure may be needed, in which case the cost of repair is

much higher.

Assuming that the crack size is divided into r regions,

i.e., (0,a 1 ), (al,a 2 ),...,(arl,a r), and the cost of repairing

a crack in each region varies. Then, the probability of re-

pairing a crack in the kth region during the nth inspection

maintenance, denoted by G(n;k), is obtained as [Ref. 81]

G(n;k) = fa(n¶) (X)FD(X)dx for n=1,2,...

ak-1 (182)

in which fa(nt) (x) is given by Eqs. (160) and (172), and

"D(x) is given by Eq. (154). It follows from Eq. (1-78)

that the probability of repairing a crack of any size,

G(n), during the nth inspection maintenance is

r
G(n) = G S(n;k) (183)

k=l

It should be noted that G(n) can also be interpreted

as the average percentage of fastener holes to be repaired
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m,'

during the nth inspection maintenance. For simplicity of'

presentation, only the results of G(n) will be presented

in this example.

The probability of failure depends on the inspection

interval T and the capability of the NDE system employed. Four

(4) probability of detection (POD) curves shown in Fig. 86
* 8*

will be considered. The parameter values of a and 0

appearing in Eq. (154) for these four POD curves are as

follows: Wi) = 55.28 and 0* = 16.4 for the No. 1 POD

curve, (ii) a* = 66.6 and 0* = 23.4 for the No. 2 POD curve,

(iii) a* = 28.94 and 0" = 11.73 for the No. 3 POD curve,

and (iv) a = 13.44 and 0* = 3.95 for the No. 4 POD curve.

Without inspection maintenance, the cumulative pro-

babilities of failure for one hole and for the entire stress

region containing eight fastener holes are plotted as a

solid curve and a dashed curve, respectively, in Fig. 87.

These curves are designated by zero. It is observed that

the probability of failure increases drastically as the

service life increases, a typical fatigue failure mode.

Under periodic inspection maintenance using the No. 1

POD curve shown in Fig. 86, the cumulative probabilities

of failure for one hole and for the entire stress region

are computed and displayed in Fig. 87 as solid curves and

dashed curves, respectively. The numerical value designated

for each curve in the figure denotes the number of inspec-

tion maintenances in 16,000 flight hours. For instance,

the curve designated by 1 indicates the cumulative failure

1.06
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probability with an inspection interval of 8,000 flight

hours (1 inspection in 16,000 flight hours). It is observed

from Fig. 87 that the probability of failure is reduced

drastically as the number of inspection maintenances

increases.

The average percentage of fastener holes to be repaired

during each inspection maintenance, as well as the total

average percentage of fastener holes to be repaired in

16,000 flight hours are presented in Table 8. From Table 8

the total average percentage of fastener holes to be re-

paired increases as the number of inspection maintenances

increases. This trend has been expected since higher

component reliability is achieved through higher percentage

of repairs.

Suppose the capability of the NDE system is represented

by No. 2 POD curve as shown in Fig. 86. The cumulative

probabilities of failure under various number of inspection

maintenances are presented in Fig. 88. The average per-

centage of fastener holes to be repzired ii shown in

Table B. Since the capability of the No. 2 POD curve is not

as good as that of the No. 1 POD curve, the cumulative

probability of failure shown in Fig. 88 is higher than that

displayed in Fig. 87. However, the average percentage of

repair is lower using the No. 2 POD curve.
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Both No. 1 and No. 2 POD curves are narrow-banded,

indicating that the NDE system involves less uncertainty

in crack detection. Now consider the No. 3 and No. 4 POD

curves, respectively, for the NDE system. Since these POD

curves are wide-banded, the NDE system involves considerable

statistical uncertainty in crack detections. By use of the £
No. 3 POD curve, the cumulative probabilities of failure

are displayed in Fig. 89. The average percentage of fastener

holes to be repaired during each inspection maintenance and

the total average percentage of fastener holes to be repaired

in 16,000 flight hours are shown in Table 8. The results

using the No. 4 POD curve are presented in Fig. 90 and

Table 8. Again, the inspection maintenance is capable of

significantly reducing the probability of failure for

components in service.

A comparison between the results obtained using the

No. 2 POD curve (narrow-banded) and the No. 4 POD curve

(wide-banded) indicates that although the No. 4 POD curve

is capable of detecting a smaller crack with a 50% pro-

bability, it has a higher probability of missing large

cracks, and hence the probability of failure is higher.

Likewise, many small cracks may be detected by the No. 4

POD curve, leading to an unnecessary repair. It is ob- .

served from Table 8 and Figs. 87 to 90 that the narrow-

banded POD curve is superior to the wide-banded POD curve
in terms of the probability of failure and the average

percentage of fastener holes to be repaired.
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7.3 Conclusion

A method has been developed for the fatigue reliability

analysis of some types of airframe structures under scheduled

inspection and repair maintenance. It is shown that the

scheduled inspection maintenance can be used to drastically

reduce the fatigue failure probability. The significant

effect of the NDE system on the component reliability is

also demonstrated. The analysis methodology presented may

be applied to the probabilistic damage tolerance analysis

in the future.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

Various stochastic models for fatigue crack propagation

under either constant amplitude or spectrum loadings have

been investigated. These models are based on the assumption

that the crack growth rate is a lognormal random process,

including the general lognormal random process, lognormal

white noise process, lognormal random variable and second

moment approximations, such as Weibull, gamma, lognormal and

Gaussian closure approximations. It is shown in this report

that (i) the white noise process is definitely not a valid

model for fatigue crack propagation, and (ii) all other

stochastic models considered correlate very well with the

experimental results of fastener hole specimens.

In the development of stochastic crack propagation

models, the main contribution of this report are given in

the following: (i) Although the concept of the general

lognormal random process model has been proposed in the

literature by Yang et al. (Refs. 16-21,25-26], the analysis

procedures have not been worked out and the advantage of the

model has not been demonstrated by experimental results. In

this report a method of analysis for the general lognormal

random process model has been developed using the Monte Carlo
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simulation approach, and a correlation study for such a model

with extensive test results has been conducted, (ii) the

accuracy of the lognormal random variable model has been im-

proved herein using an equal number of data points for each

specimen and the incremental polynomial method for deriving

the crack growth rate data, and (iii) various second moment

approximations are new models proposed and verified by exper-

imental data in this report.

Experimental data used for the correlation study with

various stochastic models include fastener hole specimens

under fighter or bomber spectrum loadings and center-cracked

specimens under constant amplitude loads. The fastener hole

specimens consist of WPB, XWPB, WWPF, WWPB and CWPF data

sets. Basically, the WPB and the XWPB data sets involve

fatigue crack propagation in the very small crack size region,

whereas the WWPF and WWPB data sets cover the entire crack

size region, i.e., from the very small cracks to large cracks.

The CWPF data set involves crack propagation in a salt water

corrosive environment. Therefore, the data sets for the fas-

tener hole specimens used in the present study cover adequately

different loading conditions, environments, load transfers

and crack size range. It should be emphasized that, unlike

the center-cracked specimens, the fastener bole specimen are

not intentionally prefLIwed, i.e., the specimen starts with

the crack initiation stage.

The general lognormal random process model is not amenable

to the analytical close-form solution. A method of analysis
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is developed using the Monte Carlo simulation approach. The

model is demonstrated to be very flexible and it correlates

excellently with all the experimental data considered. The

second moment approximation models are new models proposed

in this report. The analysis procedures for these new models

are quite simple and their correlations with all the test_

results are very satisfactory. This indicates that as long

as the first two central moments of the crack size distri-

bution can be estimated reasonably well, the model will have

very good correlation with the experimental test results,

with the possible exception of the tail portion of the dis-

tribution as will be discussed later.

The lognormal random variable model is a special case

of the lognormal random process model, in which the correla-

tion distance is infinity. As a result, it is always con-

servative in predicting the crack growth damage accumulation,

in the sense that the statistical dispersion based on the

model is the largest among the class of lognormal random

processes. Further, it is less flexible than the lognormal

random process model and the second moment approximation

models because its correlation distance is fixed to be in-

finity.

The lognormal random variable model correlates very

well. with all the experimental results of fastener hole

specimens under spectrum loadings. However, for crack pro-

pagation in the large crack size region in center-cracked

specimens (CCT data set) under constant amplitude loading,

112
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the model is rather conservative in the sense that it predicts

larger statistical dispersion. Note that the statistical

dispersion of the CCT data set is much smaller than that of

all the fastener hole specimen data sets under spectrum

loadings, and such a small statistical variability may not

reflect the real situation of structural details experienced

in the field. Laboratory test results of full-scale articles

[e.g., 6,45], as well as the results of tear-down inspec-

tions [e.g., 82], indicate that the statistical variability

of the crack growth damage accumulation is much larger than

that of the CCT data set. Consequently, it is expected that

the lognormal random variable model may reflect the field

situation more realistically.

The lognormal random variable model is very attractive

for practical applications due to the following reasons: (i)

it is mathematically very simple for practical applications

including analysis and design requirements, (ii) it is of

conservative nature, (iii) it may reflect closely the crack

growth behavior in the real structure in service, and (iv)

it does not require the correlation distance parameter, such

that a small number of replicate specimens is adequate. In

practical applications, test results usually are not plen-

tiful and hence the model is very attractive.

The general lognormal random process model and the

second moment approximation models are quite flexible and

they are capable of describing fatigue crack propagation

behavior very well. However, these models require a corre-
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lation distance parameter, the determination of which may

need a large number of sample functions for the primary data.

It is mentioned that the information similar to the corre-

lation distance is required in all advanced stochastic fati-

gue crack propagation models proposed in the literature

[Refs. 10-12,18-19].

For the crack propagation in fastener holes, in which

extensive data have been used for model verifications, the

lognormal random variable model is recommended. The advan-

tages of such a model for practical applications to analysis

and design have been described previously. Although the

second moment approximation models and the lognormal random

process model correlation equally well with the experimental

results, the second moment approximation models are recom-

mended, because their applications are simpler than the simu-

lation approach employed for the lognormal random process

model.

In using the base-line crack propagation data (or pri- I
mary data) for crack growth analyses, the importance of having

an equal number of data points for each specimen has been

demonstrated. Adjustment is suggested by adding additional

data points artificially, if the available data set does not

contain an equal number of data points for each specimen. In

converting the primary data into the crack growth rate data

for analysis purposes, additional undesirable statistical

variability is introduced by the data processing procedures.

The five point incremental polynomial method is recommended
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over the direct secant and modified secant methods. This

is because the latter two methods introduce much larger

additional statistical dispersion into the crack growth

rate data than the former.

Based on the recommended lognormal random variable

crack growth rate model and the equivalent initial flaw

size (EIFS) concept, a stochastic-based initial fatigue

quality (IFQ) model has been described and evaluated for the

durability analysis of relatively small cracks in fastener

holes (e.g., <0.1"). Procedures have been presented and

evaluated for optimizing initial flaw size distribution

parameters based on pooled EIFS results. Expressions have

been developed for predicting the cumulative distribution

of crack size at any given time and the cumulative distri-

bution of times to reach any given crack size. The pre-

dictions compare well with the actual test results in the

small crack size region. However, further research is

needed to compare the durability analysis results based

on the deterministic crack growth approach (Refs. 6,64,45-

47]. Likewise, research is needed for durability analysis

applications in the large crack size region.

A fatigue reliability analysis methodology has been

developed for structural components under scheduled in-

spection and repair maintenance in service. Emphasis is

placed on the non-redundant components based on the slow

crack growth design requirements. The methodology takes

into account the statistical variabilities of the initial

115

•" • .•` • "/...•.•.•. • > ... `.v `•`..•.•.•.•v.,.•-•v°...• . , • --, -•-?,.•;..•-. •...;-'.-.'-



fatigue quality, crack propagation rates, service load spec-

tra, nondestructive evaluation (NDE) systems, etc. The

significant effect of the NDE system as well as the scheduled

inspection maintenance on the fatigue reliability of struc-

tural components have been illustrated. A numerical example

for the crack propagation in fastener holes of a F-16 lower

wing skin is worked out to demonstrate the application of the

developed analysis methodology.

The stochastic crack growth models investigated in this

report are aimed at the prediction of the global behavior

of the entire population. As such, the accuracy of the pre-

dicted upper or lower tail of the distribution of either

the crack size at any service time or the propagation life

to reach a specific crack size may be sacrificed. The dura-

bility requirement of aircraft structures deals with the

small crack size in which the extent of cracking and the

economical life are o:' major concern [Refs. 6,45-47]. Under

this circumstance, the prediction of the entire crack popu-

lation, rather than the lower tail, should be made. Note

that the lower tails of the distributions shown in Figs. 24

and 25 for the WPB and XWPB data sets, respectively, should

not be interpreted as early failure, because the correspond-

ing crack size is very small. Thus, the present investigation "

for the stochastic crack growth models is applicable to the

durability analysis of aircraft structures.

The damage tolerance requirement, however, is dealing

with the safety of flight and hence the crack propagation
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in the large crack size region (Refs. 1-3]. In this case,

the lower tail portion of the distribution of the propaga-

tion life, representing the early failure, is of major

concern. As a result, any stochastic model should be capable

of accurately predicting the lower tail portion of the pro-

pagation life distribution. The stochastic models investi-
gated in this report may be applicable to the damage tolerance

analysis; however, further effort is needed to demonstrate

their applicability. Another alternate approach for these

stochastic models is to estimate the corresponding crack

growth rate parameters only fron, a certain percentage, say

5%, of the test results with high crack growth rate. Further

investigation is needed to verify such a possibility. An-

other problem of future research in the damage tolerance

analysis is the stochastic approach to take into account

the outliers resulting in an early failure.

Finally, the stochastic models for crack propagation

presented in this report ars based on the crack growth rate

equation. As such, only the crack growth rate data are

required to estimate the crack growth rate parameters and

the model statistics. How the crack size a(t) varies as a

function of the propagation life t is not needed. Likewise,

the crack growth rate data generated under nonhomogeneous

conditions can be pooled together to increase the sample

size (16,25,26). This is consistent with the fracture

mechanics approach, and hence is referred to as the frac-

ture mechanics-based stochastic model. Any stochastic model,
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which is based on the data of the crack size a(t) versus

the propagation life t for estimating the model parameters,

is not consistent with fracture mechanics.
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Table 1: Linear Regression Estimate of b, Q, Oz and
Coefficient of Variation, V, of Crack Growth

Rate

Data b 3 V a(O) aF
Set (10) z (%) (in) (in)

WPB 0.9413 0.116 0.0702 16.3 0.004 0.04

XWPB 1.0144 0.284 0.1093 25.6 0.004 0.07

WWPF 1.1226 0.414 0.0774 17.9 0.017 0.51

WWPB 1.0125 0.237 0.1102 25.8 0.008 0.57

CWPF 1.3721 2.128 0.2020 49.2 0.010 0.35

* a(0) = initial crack size, aF = final crack size
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Table 2: Correlation Parameter &-I and Number of Simulated

Sample Functions for Each Data Set

WPB XWPB WWPF WWPB CWPF

(Flight 6,670 10,000 8,330 11,100 2,860
Hours)

No. of
Simulated 160 176 180 180 200

Samples

1.
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TABLE 3: Correlation Parameter 4-1 in Flight Hours for Various
Data Sets and Approximations

Flight Hours

""--- r•.2.ox inat ion Gaus3ian Weibull Gamma Lognormal
Data Set _ Closure

WEB 70042 70143____1_____7.

__WPB 10.510 IO.9;10 10.09 10.6

WWP 3 80.460 "18.460 A8L 460. 38p.460

WWPB 114-"0 11.;7_60 ,1.176 1

"4 .i600 4p6OO , p 000
C1T ,, 15 61812 15.380" 19 .6180 15.380"

* Cycles
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TABLE 4: Linear Regression Estimate of b, Q, a2 and
Coefficient of Variation, V, of Crack Growth
Rate for CWPF Fastener Holes Using Various

Data Processing Procedures

,b V
b(10-3) (%W

5 Point Incremental
Polynomial Method 1.385 2.120 0.219 53.9
(raw data)

5 Point Incremental
Polynomial Method 1.372 2.128 0.202 49.2
(added data)*

Modified Secant 1.393 2.142 0.231 57.2

* Equalized the number of a(t) versus t values for each
specimen in the data set.
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Table 5: EIFSs For Data Sets WPF and WPB Based
on Stochastic Crack Growth

WPF WPB
RANK EIFS EIFS

(Inch) (Inch)

1 .000218 .00006051ý
2 .000368 .0001240
3 .000385 .0001255
4 .000387 .0001652
5 .000459 .0001825
6 .000478 .0001872
7 .000485 .0001910
8 .000494 .0002105
9 .000523 .0002238

10 .000534 .0002458
11 .000582 .0002638
12 .000624 .0002658
13 .000629 .0002747
14 .000656 .0002969
15 .000714 .0003361
16 .000913 .0003386
17 .000962 .0003656
18 .000994 .0003822
19 .001000 .0003882
20 .001025 .0003963
21 .001040 .0004342
22 .001056 .0004421
23 .001075 .0004506
24 .001325 .0004665
25 .001390 .0005016
26 .001466 .0005073
27 .001797 .0007059
28 .001871 .0007586
29 .001890 .0008675
30 .002410 .0010270
31 .002441 .0010310
32 .003407 .0020770
33 .003864 ---

NOTE: Fractographic Crack Size Range Used: 0.01" < a(t) • 0.05"
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Table 8: Average Percentage of Repair

!
No. 1 POD CURVE

NUMBER INSPECTION AVERAGE PERCENTAGE OF REPAIR

OF INTERVAL, i th INSPECTION MAINTENANCE TOTAL
IMSPECTIONS HOURS 1 2 3 4 5

1 8,000 25.54 25.54
2 5,333 12.17 29.19 41.36
3 4,000 6.74 19.26 23.78 49.78

No. 2 POD CURVE

1 8,000 8.45 8.45
2 5,333 1.46 18.61 20.07
3 4,000 0.24 8.21 18.27 26.72
4 3,200 0.03 3.50 11.49 15.85 30.87

No. 3 POD CURVE

1 8,000 2.62 2.62
2 5,333 0.17 9.53 9.70
3 4,000 0.01 2.61 12.19 14.81
4 3,200 0.00 0.68 5.63 11.93 18.24
5 2,666 0.00 0.17 2.45 7.11 10.95 20.68

No. 4 POD CURVE

1 8,000 28.13 28.13
2 5,333 16.02 29.42 45.44
3 4,000 11.00 20.57 24.77 56.34
4 3,200 8.45 15.40 19.40 21.01 64.26
5 2,666 7.00 12.20 15.66 17.46 18.23 70.55
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Figure 28(a): Correlation Between Lognormal Random I
Variable Model and Test Results for •-
the Distribution of Time to Reach 0.04
Inch Crack for CWPF Fastener Holes.

155



10 CWPF ........ "

0.8-

U. 0.6 0.08 IN.
z0-

-0.4-

0.0 0 2 4 6 8 10

FLIGHT HOURS, 10 3 I!

Figure 28(b).- Correlation Between Lognormal Random
Variable Model and Test Results for
the Distribution of Time to Reach
0.08 Inch Crack for CWPF Fastener
Holes.
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Figure 28(c): Correlation Between Lognormal Random
Variable Model and Test Results for
the Distribution of Time to Reach 0.35
Inch Crack for CWPF Fastener Holes.
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Figure 29: Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of
Crack Exceedance at 8,000 Flight Hours for
WPB Fastener Holes.
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Figure 30: Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of
Crack Exceedance at 6,000 Flight Hours for
XWPB Fastener Holes.
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Figure 33: Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of
Crack Exceedance at 1,500 Flight Hours for
CWPF Fastener Holes.
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Figure 53(b-1) t Correlation Between Second Moment Approxi-
mations and Experimental Results for the
DistribuLion of Time to Reach Crack Size
of 0.04 Inch for CWPF Fastener Holesi I
Gaussian Closure and Lognormal Approximations.
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Figure 53(a-2); Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Distribution of Time to Reach Crack Size
of 0.08 Inch for CWPF Fastener Holes:
Weibull and Gammua Approximations.
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Figure 53(b-2): Correlation Between Second Moment
Approximations and Experimental
Results for the Distribution of
Time to Reach Crack Size of 0.08
Inch for CWPF Fastener Holes;
Gaussian Closure and Lognormal
Apprcximat ions.
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Figure 53(a-3): Correlation Between SEcond Moment
Approximations and Experimental
Results for the Distribution of
Time to Reach Crack Size of 0.35
Inch for CWPF Fastener Holes;
Weibull and Gamma Approximations.

190

S S *'~ 4' * S *~X ~ *.



1.0 CWPF

Z

0.8. 0.35 IN.

M

U- 0.6
Z

0 .......2.... GAUSSIAN
0.44 CLOSURE0 APPROX.

0 -LOGNORMAL

S0.22 APPROX.

0 2 4 6 8 10 12

FLIGHT HOURS, 10 3

Figure 53(b-3): Correlation Between Second Moment
Approximations and Experimental
Results for the Distribution of
Time to Reach Crack Size of 0.35
Inch for CWPF Fastener Holes;
Gaussian Closure and Lognormal
Approximations.
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Figure 54 (a): Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Probability of Crack Exceedance at 8,000
Flight Hours for WPB Fastener Holes;
Weibull and Gamma Approximations.
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Figure 54(b): Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Probability of Crack Exceedance at 8,000
Flight Hours for WPB Fastener Holes;
Gaussian Closure and Lognormal Approximations.
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Figure 55(a): Correlation Between Second Moment Approxi-

mations and Experimental Results for the
Probability of Crack Exceedance at 6,000
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Weibull and Gamma Approximations.
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Figure 61(b): Correlation Between Lognormal Random
Variable 'fodel and Experimental Results
for Distribution of Number of Load
Cycles to Reach Half Crack Length 49.8
mm for Center-Cracked Specimens.
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F.! ure 62: Correlation Between Lognormal Random Variable
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Figure 67 (a): Correlation Between Second Moment
Approximations and Experimental
Results for Probability of Crack
Exceedance after 150,000 Load
Cycles for Center-Cracked Specimens;
Weibull and Gamma Approximations.
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Figure 72: Correlation Between Predictions and Test Result~q
for the Cumulative Distribution of Crack Size at
9200 and 14,800 Flight Hours for WPF Data Set (Case
1: EIFSs for WPF; Un-normalized Q Value)
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Value)
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